Solving linear systems means to solve linear equations and inequalities. Then to graph it and describing it by statical statements.
No. At least, it can't have EXACTLY 3 solutions, if that's what you mean. A system of two linear equations in two variables can have:No solutionOne solutionAn infinite number of solutions
Finding a set of value for the set of variables so that, when these values are substituted for the corresponding variables, all the equations in the system are true statements.
I guess you mean, you want to add two equations together. The idea is to do it in such a way that one of the variables disappears from the combined equation. Here is an example:5x - y = 15 2x + 2y = 11 If you add the equations together, no variable will disappear. But if you first multiply the first equation by 2, and then add the resulting equations together, the variable "y" will disappear; this lets you advance with the solution.
If an ordered pair is a solution to a system of linear equations, then algebraically it returns the same values when substituted appropriately into the x and y variables in each equation. For a very basic example: (0,0) satisfies the linear system of equations given by y=x and y=-2x By substituting in x=0 into both equations, the following is obtained: y=(0) and y=-2(0)=0 x=0 returns y=0 for both equations, which satisfies the ordered pair (0,0). This means that if an ordered pair is a solution to a system of equations, the x of that ordered pair returns the same y for all equations in the system. Graphically, this means that all equations in the system intersect at that point. This makes sense because an x value returns the same y value at that ordered pair, meaning all equations would have the same value at the x-coordinate of the ordered pair. The ordered pair specifies an intersection point of the equations.
It means that there is no set of values for the variables such that all the linear equations are simultaneously true.
Solving linear systems means to solve linear equations and inequalities. Then to graph it and describing it by statical statements.
It probably means that one of the equations is a linear combination of the others/ To that extent, the system of equations is over-specified.
A linear system just means it's a line. A solution is just a point that is on that line. It means that the two coordinates of the point solve the equation that makes the line. Alternatively, it could mean there are 2 (or more) lines and the point is where they intersect; meaning its coordinates solve both (or all) equations that make the lines.
No. At least, it can't have EXACTLY 3 solutions, if that's what you mean. A system of two linear equations in two variables can have:No solutionOne solutionAn infinite number of solutions
Any two numbers that make one of the equations true will make the other equation true.
It means that the equations are actually both the same one. When they're graphed, they both turn out to be the same line.
They do not. A set of lines can also be considered as a system of linear equations. But the fact that there is such a system does not mean that the lines intersect.
Finding a set of value for the set of variables so that, when these values are substituted for the corresponding variables, all the equations in the system are true statements.
literal equations? maybe you mean linear equations? Please edit and resubmit your question if that is what you meant.
I guess you mean, you want to add two equations together. The idea is to do it in such a way that one of the variables disappears from the combined equation. Here is an example:5x - y = 15 2x + 2y = 11 If you add the equations together, no variable will disappear. But if you first multiply the first equation by 2, and then add the resulting equations together, the variable "y" will disappear; this lets you advance with the solution.
If an ordered pair is a solution to a system of linear equations, then algebraically it returns the same values when substituted appropriately into the x and y variables in each equation. For a very basic example: (0,0) satisfies the linear system of equations given by y=x and y=-2x By substituting in x=0 into both equations, the following is obtained: y=(0) and y=-2(0)=0 x=0 returns y=0 for both equations, which satisfies the ordered pair (0,0). This means that if an ordered pair is a solution to a system of equations, the x of that ordered pair returns the same y for all equations in the system. Graphically, this means that all equations in the system intersect at that point. This makes sense because an x value returns the same y value at that ordered pair, meaning all equations would have the same value at the x-coordinate of the ordered pair. The ordered pair specifies an intersection point of the equations.