Congratulations! You already have. h = S+r
17 S in a H P
multiplication is point to point and convolustion is point to multi-point ex multiplication-- s[n]=x[n].h[n] s[0]=[x[0].h[0] s[1]=[x[1].h[1] s[2]=[x[2].h[2] . . . .. s[n-1]=[x[n-1].h[n-1] convollustion s[n]=x[n]*h[n] s[0]=[x[0].h[0]+x[0].h[1]+x[0].h[2]+.......+x[0].h[n-1] s[1]=[x[1].h[0]+x[1].h[1]+x[1].h[2]+.......+x[1].h[n-1] s[2]=[x[2].h[2]+x[2].h[1]+x[2].h[2]+.......+x[2].h[n-1] . . . s[n-1]=[x[n-1].h[0]+x[n-1].h[1]+x[n-1].h[2]+.......+x[n-1].h[n-1].
The expression h + 56 can't be simplified. If you assign a value to h, you can calculate the sum.
Let s be the length of a side of the hexagon and let h be the the apothem 6(1/2sh) it the area of 3sh.
6 Sides of a Hexagon
6 Sides to a Hexagon
6 is half a dozen
Sides in a hexagon
It means 6 sides of a Hexagon. coolio
6 SIDES of a HEXAGON -- from ORDISI
6 more weeks of winter if the groundhog sees his shadow
nobody because they thought it was a piece of S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
2 Fe (s) + 3 H 2SO 4 (aq) β Fe 2(SO 4) 3 (s) + 3 H 2 (g). This is an oxidation-reduction (redox) reaction: 6 H I + 6 e - β 6 H 0 (reduction).
M-U-S-H - 1975 was released on: USA: 6 September 1975
Let the side of the square base of the cuboid be s > 0; Let the height of the cuboid be h > 0; Let the surface area be A > 0; Then: A = 2 × (s × s + s × h + h × s) = 2(s² + 2sh) = 2s² + 4sh → 4sh = A - 2s² → h = (A - 2s²)/4s V = s × s × h = s²h = s²(A - 2s²)/4s = s(A - 2s²)/4 = sA/4 - s³/2 This has a maximum value when dV/ds = 0 dV/ds = A/4 - 3s²/2 → 3s²/2 = A/4 → s² = A/6 → s = √(A/6) now: h = (A - 2s²)/4s = s × (A - 2s²)/4s² = s × (A - 2 × A/6)/(4 × A/6) = s × (A - A/3)/(2A/3) = s × (2A/3)/(2A/3) = s × 1 = s → The maximum volume (V) for a cuboid for a given surface area (A) is when the cuboid is a cube.
sachet