Algebraic equations, trigenometric equations, linear equations, geometric equations, partial differential equations, differential equations, integrals to name a few.
The answer will depend on what kinds of equations: there are linear equations, polynomials of various orders, algebraic equations, trigonometric equations, exponential ones and logarithmic ones. There are single equations, systems of linear equations, systems of linear and non-linear equations. There are also differential equations which are classified by order and by degree. There are also partial differential equations.
Olusola Akinyele
The website in the Related Link should be of some assistance.
It is an equation in which one of the terms is the instantaneous rate of change in one variable, with respect to another (ordinary differential equation). Higher order differential equations could contain rates of change in the rates of change (for example, acceleration is the rate of change in the rate of change of displacement with respect to time). There are also partial differential equations in which the rates of change are given in terms of two, or more, variables.
P. Quittner has written: 'Superlinear parabolic problems' -- subject(s): Differential equations, Elliptic, Differential equations, Parabolic, Differential equations, Partial, Elliptic Differential equations, Parabolic Differential equations, Partial Differential equations
George Francis Denton Duff has written: 'Partial differential equations' -- subject(s): Differential equations, Partial, Partial Differential equations 'Differential equations of applied mathematics' -- subject(s): Differential equations, Differential equations, Partial, Mathematical physics, Partial Differential equations
J. L Blue has written: 'B2DE' -- subject(s): Computer software, Differential equations, Elliptic, Differential equations, Nonlinear, Differential equations, Partial, Elliptic Differential equations, Nonlinear Differential equations, Partial Differential equations
Laurent Veron has written: 'Singularities of solutions of second order quasilinear equations' -- subject(s): Differential equations, Elliptic, Differential equations, Nonlinear, Differential equations, Parabolic, Elliptic Differential equations, Nonlinear Differential equations, Numerical solutions, Parabolic Differential equations, Singularities (Mathematics)
Elemer E. Rosinger has written: 'Generalized solutions of nonlinear partial differential equations' -- subject(s): Differential equations, Nonlinear, Differential equations, Partial, Nonlinear Differential equations, Numerical solutions, Partial Differential equations 'Distributions and nonlinear partial differential equations' -- subject(s): Differential equations, Partial, Partial Differential equations, Theory of distributions (Functional analysis)
David L. Colton has written: 'Analytic theory of partial differential equations' -- subject(s): Differential equations, Partial, Numerical solutions, Partial Differential equations 'Partial differential equations' -- subject(s): Differential equations, Partial, Partial Differential equations
Daniel W. Stroock has written: 'Probability Theory, an Analytic View' 'An Introduction to the Analysis of Paths on a Riemannian Manifold (Mathematical Surveys & Monographs)' 'Partial differential equations for probabalists [sic]' -- subject(s): Differential equations, Elliptic, Differential equations, Parabolic, Differential equations, Partial, Elliptic Differential equations, Parabolic Differential equations, Partial Differential equations, Probabilities 'Essentials of integration theory for analysis' -- subject(s): Generalized Integrals, Fourier analysis, Functional Integration, Measure theory, Mathematical analysis 'An introduction to partial differential equations for probabilists' -- subject(s): Differential equations, Elliptic, Differential equations, Parabolic, Differential equations, Partial, Elliptic Differential equations, Parabolic Differential equations, Partial Differential equations, Probabilities 'Probability theory' -- subject(s): Probabilities 'Topics in probability theory' 'Probability theory' -- subject(s): Probabilities
Fritz John has written: 'Partial differential equations, 1952-1953' -- subject(s): Differential equations, Partial, Partial Differential equations 'Fritz John collected papers' 'Partial differential equations' 'On finite deformations of an elastic material' 'Plane waves and spherical means applied to partial differential equations' -- subject(s): Differential equations, Partial, Partial Differential equations 'On behavior of solutions of partial differential equations'
An initial value problem (IVP) in differential equations is a problem that involves finding a solution to a differential equation that satisfies certain initial conditions. These initial conditions are usually specified as the values of the unknown function and its derivatives at a given point in the domain. The solution to an IVP is unique if it exists.
No. Differential equations come up in Calculus.
Differential Equations - journal - was created in 1965.
Enzo Mitidieri has written: 'Apriori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities' -- subject(s): Differential equations, Nonlinear, Differential equations, Partial, Inequalities (Mathematics), Nonlinear Differential equations, Partial Differential equations