Best Answer

Graphically, it is the point of intersection where the lines (in a linear system) intersect. If you have 2 equations and two unknowns, then you have a 2 lines in a plane. The (x,y) coordinates of the point where the 2 lines intersect represent the values which satisfies both equations. If there are 3 equations and 3 unknowns, then you have lines in 3 dimensional space. If all 3 lines intersect at a point then there is a solution to the system. With more than 3 variables, it is difficult to visualize more dimensions, though.

Study guides

☆☆

Q: What is a solution to a system of equations graphically?

Write your answer...

Submit

Still have questions?

Continue Learning about Algebra

The values for which the equations are solved. Graphically the intersection of the lines that are the solutions to the individual equations. The link below gives some explanations. The equations themselves will have to be given for a solution to be found.

A system of equations with exactly one solution intersects at a singular point, and none of the equations in the system (if lines) are parallel.

No because there are no equations there to choose from.

Inconsistent.

If an ordered pair is a solution to a system of linear equations, then algebraically it returns the same values when substituted appropriately into the x and y variables in each equation. For a very basic example: (0,0) satisfies the linear system of equations given by y=x and y=-2x By substituting in x=0 into both equations, the following is obtained: y=(0) and y=-2(0)=0 x=0 returns y=0 for both equations, which satisfies the ordered pair (0,0). This means that if an ordered pair is a solution to a system of equations, the x of that ordered pair returns the same y for all equations in the system. Graphically, this means that all equations in the system intersect at that point. This makes sense because an x value returns the same y value at that ordered pair, meaning all equations would have the same value at the x-coordinate of the ordered pair. The ordered pair specifies an intersection point of the equations.

Related questions

The values for which the equations are solved. Graphically the intersection of the lines that are the solutions to the individual equations. The link below gives some explanations. The equations themselves will have to be given for a solution to be found.

The values for which the equations are solved. Graphically the intersection of the lines that are the solutions to the individual equations. The link below gives some explanations. The equations themselves will have to be given for a solution to be found.

there is no linear equations that has no solution every problem has a solution

A system of equations with exactly one solution intersects at a singular point, and none of the equations in the system (if lines) are parallel.

The solution of a system of linear equations is a pair of values that make both of the equations true.

A system of equations may have any amount of solutions. If the equations are linear, the system will have either no solution, one solution, or an infinite number of solutions. If the equations are linear AND there are as many equations as variables, AND they are independent, the system will have exactly one solution.

If a system has no solution, it means that the lines are parallel.

A pair of simultaneous equations in two unknowns which are inconsistent - in the sense that there is no solution that simultaneously satisfies both equations. Graphically, the equations are those of two parallel lines (slope = 2). Since, by definition, they cannot meet there is no solution to the system.

Presumably the question concerned a PAIR of linear equations! The answer is two straight lines intersecting at the point whose coordinates are the unique solution.

A system of equations will have no solutions if the line they represent are parallel. Remember that the solution of a system of equations is physically represented by the intersection point of the two lines. If the lines don't intersect (parallel) then there can be no solution.

Graph both equations on the same graph. Where they intersect is the solution to the system of equations

People also asked