answersLogoWhite

0

Graphically, it is the point of intersection where the lines (in a linear system) intersect. If you have 2 equations and two unknowns, then you have a 2 lines in a plane. The (x,y) coordinates of the point where the 2 lines intersect represent the values which satisfies both equations. If there are 3 equations and 3 unknowns, then you have lines in 3 dimensional space. If all 3 lines intersect at a point then there is a solution to the system. With more than 3 variables, it is difficult to visualize more dimensions, though.

User Avatar

Wiki User

12y ago

Still curious? Ask our experts.

Chat with our AI personalities

MaxineMaxine
I respect you enough to keep it real.
Chat with Maxine
RafaRafa
There's no fun in playing it safe. Why not try something a little unhinged?
Chat with Rafa
RossRoss
Every question is just a happy little opportunity.
Chat with Ross

Add your answer:

Earn +20 pts
Q: What is a solution to a system of equations graphically?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Algebra

What is the definition of solution of system of linear equations?

The values for which the equations are solved. Graphically the intersection of the lines that are the solutions to the individual equations. The link below gives some explanations. The equations themselves will have to be given for a solution to be found.


A system of equations with exactly one solution?

A system of equations with exactly one solution intersects at a singular point, and none of the equations in the system (if lines) are parallel.


What does it mean both algebraically and graphically when an ordered pair is a solution to a system of two linear equations?

If an ordered pair is a solution to a system of linear equations, then algebraically it returns the same values when substituted appropriately into the x and y variables in each equation. For a very basic example: (0,0) satisfies the linear system of equations given by y=x and y=-2x By substituting in x=0 into both equations, the following is obtained: y=(0) and y=-2(0)=0 x=0 returns y=0 for both equations, which satisfies the ordered pair (0,0). This means that if an ordered pair is a solution to a system of equations, the x of that ordered pair returns the same y for all equations in the system. Graphically, this means that all equations in the system intersect at that point. This makes sense because an x value returns the same y value at that ordered pair, meaning all equations would have the same value at the x-coordinate of the ordered pair. The ordered pair specifies an intersection point of the equations.


Is (1 10) a solution to this system of equations?

No because there are no equations there to choose from.


What describes a system of equations that has no solution?

Inconsistent.