In vector calculus a dot product of two vectors is basically the product of the length of one vector and the length of the parallel component of the other; It doesn't matter which one is taken first because length is a scalar and scalars are commutative. the easiest way to determine the dot product of u and v(u•v) is to simply multiply the length of each vector together and then multiply by the cosine of the angle between them (|uv|cosӨ, because length is a scalar, the product is always a scalar). You could also identify the the component of v that is parallel to u and and multiply their lengths but it's basically the same thing (|v|cosӨ|u|).
Chat with our AI personalities
The dot-product and cross-product are used in high order physics and math when dealing with matrices or, for example, the properties of an electron (spin, orbit, etc.).
The magnitude of dot product of two vectors is equal to the product of first vector to the component of second vector in the direction of first. for ex.- A.B=ABcos@
Because only the magnitudes are multiplied.
In mathematics, the dot product is an algebraic operation that takes two equal-length sequences of numbers (usually vectors) and returns a single number obtained by multiplying corresponding entries and adding up those products. The name is derived from the interpunct "●" that is often used to designate this operation; the alternative name scalar product emphasizes the scalar result, rather than a vector result.The principal use of this product is the inner product in a Euclidean vector space: when two vectors are expressed in an Orthonormal basis, the dot product of their coordinate vectors gives their inner product. For this geometric interpretation, scalars must be taken to be Real. The dot product can be defined in a more general field, for instance the complex number field, but many properties would be different. In three dimensional space, the dot product contrasts with the cross product, which produces a vector as result.
Your question makes no sense.... What you meant to say is:Is the sum of the square of magnitude of the cross product and the square of dot product of two vectors equal to the product of the square of their magnitudes?i.e:|A x B|2 +(A .B)2 = |A|2|B|2The answer is YES. It is called Lagrange's identity and is a special case of the Binet-Cauchy identity.(Ax B) .(Cx D)+(A.D)(B.C)=(A.C)(B.D)Where A= Cand B= D.