Let x = [x1, x2, ... xk] and y= [y1, y2, ... yk] be the two vectors of length k.
Then we define their sum to be x+y = [x1+y1, x2+y2, ... xk+yk]
In other words, add the corresponding elements in the two vectors.
Chat with our AI personalities
There is no difference between vector addition and algebraic addition. Algebraic Addition applies to vectors and scalars: [a ,A ] + [b, B] = [a+b, A + B]. Algebraic addition handles the scalars a and b the same as the Vectors A and B
Zero vector or null vector is a vector which has zero magnitude and an arbitrary direction. It is represented by . If a vector is multiplied by zero, the result is a zero vector. It is important to note that we cannot take the above result to be a number, the result has to be a vector and here lies the importance of the zero or null vector. The physical meaning of can be understood from the following examples. The position vector of the origin of the coordinate axes is a zero vector. The displacement of a stationary particle from time t to time tl is zero. The displacement of a ball thrown up and received back by the thrower is a zero vector. The velocity vector of a stationary body is a zero vector. The acceleration vector of a body in uniform motion is a zero vector. When a zero vector is added to another vector , the result is the vector only. Similarly, when a zero vector is subtracted from a vector , the result is the vector . When a zero vector is multiplied by a non-zero scalar, the result is a zero vector.
It is an integral part of the vector and so is specified by the vector.
The components of a vector are magnitude and direction.
0 is a cross product of a vector itself