The form of the quadratic is ax2+bx+c, so the discriminant is b2-4ac.
Chat with our AI personalities
A quadratic equation is wholly defined by its coefficients. The solutions or roots of the quadratic can, therefore, be determined by a function of these coefficients - and this function called the quadratic formula. Within this function, there is one part that specifically determines the number and types of solutions it is therefore called the discriminant: it discriminates between the different types of solutions.
Yes and this will happen when the discriminant of a quadratic equation is less than zero meaning it has no real roots.
If the discriminant of a quadratic equation is less then 0 then it will have no real solutions.
A quadratic function will cross the x-axis twice, once, or zero times. How often, depends on the discriminant. If you write the equation in the form y = ax2 + bx + c, the so-called discriminant is the expression b2 - 4ac (it appears as part of the solution, when you solve the quadratic equation for "x" - the part under the radical sign). If the discriminant is positive, the x-axis is crossed twice; if it is zero, the x-axis is crossed once, and if the discriminant is negative, the x-axis is not crossed at all.
It will touch the x-axis and not cross it.