3y = 5x
y = x+2
Pluging the second equation into the first gives us
3(x+2) = 5x
3x + 6 = 5x
2x = 6
x = 3
and plugging this answer back into either original equation yeilds
y = x+2
y = 3+2
y = 5
So the answer is (3, 5)
{-1,-2}
If "equations-" is intended to be "equations", the answer is y = -2. If the first equation is meant to start with -3x, the answer is y = 0.2
Which of the following best describes the solution to the system of equations below?3x + 6y = 10 9x + 18y = 30
A system of equations with exactly one solution intersects at a singular point, and none of the equations in the system (if lines) are parallel.
x - 2y = -6 x - 2y = 2 subtract the 2nd equation from the 1st equation 0 = -8 false Therefore, the system of the equations has no solution.
x = y = 3
{-1,-2}
If "equations-" is intended to be "equations", the answer is y = -2. If the first equation is meant to start with -3x, the answer is y = 0.2
-1
No solution
-10
There are two solutions and they are: x = -1 and y = 3
Which of the following best describes the solution to the system of equations below?3x + 6y = 10 9x + 18y = 30
7
The solution of the system of linear equations ( x = 0 ) and ( y = 0 ) is the single point (0, 0) in the Cartesian coordinate system. This point represents the intersection of the two equations, where both variables are equal to zero. Thus, the only solution is the origin.
x=3
x = 1 and y = 2