10.01 is a rational number
from another wikianswers page: say that 'a' is rational, and that 'b' is irrational. assume that a + b equals a rational number, called c. so a + b = c subtract a from both sides. you get b = c - a. but c - a is a rational number subtracted from a rational number, which should equal another rational number. However, b is an irrational number in our equation, so our assumption that a + b equals a rational number must be wrong.
Rational
Do you mean can we subtract one rational number from another rational number and get an irrational number as the difference? I'm not a mathematician, but I suspect strongly the answer is no. Wouldn't this imply that we can sometimes add a rational number to an irrational one, and get a rational number as a sum? That doesn't seem possible.Ans 2.It isn't possible. Proof :-Given two rational numbers, multiply the two denominators.Express each rational in terms of the common multiple.Algebraically add the numerators of the new rational numbers.Put this over the common multiple; there's the result expressed as a ratio.
Such a product is always irrational - unless the rational number happens to be zero.
10.01 is a rational number
from another wikianswers page: say that 'a' is rational, and that 'b' is irrational. assume that a + b equals a rational number, called c. so a + b = c subtract a from both sides. you get b = c - a. but c - a is a rational number subtracted from a rational number, which should equal another rational number. However, b is an irrational number in our equation, so our assumption that a + b equals a rational number must be wrong.
Rational
Do you mean can we subtract one rational number from another rational number and get an irrational number as the difference? I'm not a mathematician, but I suspect strongly the answer is no. Wouldn't this imply that we can sometimes add a rational number to an irrational one, and get a rational number as a sum? That doesn't seem possible.Ans 2.It isn't possible. Proof :-Given two rational numbers, multiply the two denominators.Express each rational in terms of the common multiple.Algebraically add the numerators of the new rational numbers.Put this over the common multiple; there's the result expressed as a ratio.
It is a rational number.
is 34.54 and irrational or rational. number
it is a rational number but 4.121314..... is an irrational no
Irrational.
Such a product is always irrational - unless the rational number happens to be zero.
The product of a rational and irrational number can be rational if the rational is 0. Otherwise it is always irrational.
No number is irrational and rational.
If an irrational number is added to, (or multiplied by) a rational number, the result will always be an irrational number.