Study guides

☆☆

Q: Which the easy way the method of factoring or the solving the quadratic equation?

Write your answer...

Submit

Still have questions?

Continue Learning about Algebra

Using the quadratic equation formula is a method of solving quadratic equations.

There is a new method, called Diagonal Sum Method, that quickly and directly give the 2 roots without having to factor the equation. The innovative concept of this method is finding 2 fractions knowing their sum (-b/a) and their product (c/a). It is fast, convenient and is applicable to any quadratic equation in standard form ax^2 + bx + c = 0, whenever it can be factored. If it fails to find answer, then the equation is not factorable, and consequently, the quadratic formula must be used. So, I advise you to proceed solving any quadratic equation in 2 steps. First, find out if the equation can be factored? How?. Use this new method to solve it. It usually takes fewer than 3 trials. If its fails then use the quadratic formula to solve it in the second step. See book titled:" New methods for solving quadratic equations and inequalities" (Trafford Publishing 2009)

Finally, there are two methods to use, depending on if the given quadratic equation can be factored or not. 1.- The first one is the new Diagonal Sum Method, recently presented in book titled: "New methods for solving quadratic equations" (Trafford 2009). This method directly gives the two roots in the form of two fractions, without having to factor it. The innovative concept of this new method is finding 2 fractions knowing their product (c/a) and their sum (-b/a). This new method is applicable to any quadratic equation that can be factored. It can replace the existing trial-and-error factoring method since this last one contains too many more permutations. In general, it is hard to tell in advance if a given quadratic equation can be factored. However, if the new method fails to get the answers, then you can positively conclude that this equation can not be factored. Consequently, the quadratic formula must be used in solving. We advise students to always try to solve the given equation by the new method first. If the student gets conversant with this method, it usually take less than 2 trials to get answers. 2. the second one uses the quadratic formula that students can find in any algebra book. This formula must be used for all quadratic equations that can not be factored.

The standard form of a quadratic equation is: ax^2 + bx + c = 0. Depending on the values of the constants (a, b, and c), a quadratic equation may have 2 real roots, one double roots, or no real roots.There are many "special cases" of quadratic equations.1. When a = 1, the equation is in the form: x^2 + bx + c = 0. Solving it becomes solving a popular puzzle: find 2 numbers knowing their sum (-b) and their product (c). If you use the new Diagonal Sum Method (Amazon e-book 2010), solving is fast and simple.Example: Solve x^2 + 33x - 108 = 0.Solution. Roots have opposite signs. Write factor pairs of c = -108. They are: (-1, 108),(-2, 54),(-3, 36)...This sum is -3 + 36 = 33 = -b. The 2 real roots are -3 and 36. There is no needs for factoring.2. Tips for solving 2 special cases of quadratic equations.a. When a + b + c = 0, one real root is (1) and the other is (c/a).Example: the equation 5x^2 - 7x + 2 = 0 has 2 real roots: 1 and 2/5b. When a - b + c = 0, one real roots is (-1) and the other is (-c/a)Example: the equation 6x^2 - 3x - 9 = 0 has 2 real roots: (-1) and (9/6).3. Quadratic equations that can be factored.The standard form of a quadratic equation is ax^2 + bx + c = 0. When the Discriminant D = b^2 - 4ac is a perfect square, this equation can be factored into 2 binomials in x: (mx + n)(px + q)= 0. Solving the quadratic equation results in solving these 2 binomials for x. Students should master how to use this factoring method instead of boringly using the quadratic formula.When a given quadratic equation can be factored, there are 2 best solving methods to choose:a. The "factoring ac method" (You Tube) that determines the values of the constants m, n, p, and q of the 2 above mentioned binomials in x.b. The Diagonal Sum Method (Amazon ebook 2010) that directly obtains the 2 real roots without factoring. It is also considered as "The c/a method", or the shortcut of the factoring method. See the article titled" Solving quadratic equations by the Diagonal Sum Method" on this website.4. Quadratic equations that have 2 roots in the form of 2 complex numbers.When the Discriminant D = b^2 - 4ac < 0, there are 2 roots in the form of 2 complex numbers.5. Some special forms of quadratic equations:- quadratic equations with parameters: x^2 + mx - 7 + 0 (m is a parameter)- bi-quadratic equations: x^4 - 5x^2 + 4 = 0- equations with rational expression: (ax + b)/(cx + d) = (ex + f)- equations with radical expressions.

The quadratic formula is used all the time to solve quadratic equations, often when the factors are fractions or decimals but sometimes as the first choice of solving method. The quadratic formula is sometimes faster than completing the square or any other factoring methods. Quadratic formula find: -x-intercept -where the parabola cross the x-axis -roots -solutions

Related questions

Using the quadratic equation formula is a method of solving quadratic equations.

It means you are required to "solve" a quadratic equation by factorising the quadratic equation into two binomial expressions. Solving means to find the value(s) of the variable for which the expression equals zero.

Completing the square is one method for solving a quadratic equation. A quadratic equation can also be solved by several methods including factoring, graphing, using the square roots or the quadratic formula. Completing the square will always work when solving quadratic equations and is a good tool to have. Solving a quadratic equation by completing the square is used in a lot of word problems.I want you to follow the related link that explains the concept of completing the square clearly and gives some examples. that video is from brightstorm.

Completing the square is one method for solving a quadratic equation. A quadratic equation can also be solved by factoring, using the square roots or quadratic formula. Solving quadratic equations by completing the square will always work when solving quadratic equations-You can also use division or even simply take a GCF, set the quantities( ) equal to zero, and subtract or add to solve for the variable

using the quadratic formula or the graphics calculator. Yes, you can do it another way, by using a new method, called Diagonal Sum Method, that can quickly and directly give the 2 roots, without having to factor the equation. This method is fast, convenient and is applicable to any quadratic equation in standard form ax^2 +bx + c = 0, whenever it can be factored. It requires fewer permutations than the factoring method does, especially when the constants a, b, and c are large numbers. If this method fails to get answer, then consequently, the quadratic formula must be used to solve the given equation. It is a trial-and-error method, same as the factoring method, that usually takes fewer than 3 trials to solve any quadratic equation. See book titled:" New methods for solving quadratic equations and inequalities" (Trafford Publishing 2009)

You can solve a quadratic equation 4 different ways. graphing, which is quick but not reliable, factoring, completing the square and using the quadratic formula. There is a new fifth method, called Diagonal Sum Method, that can quickly and directly give the 2 roots in the form of 2 fractions, without having to factor the equation. It is fast, convenient, and is applicable whenever the equation can be factored. Finally, you can proceed solving in 2 steps any given quadratic equation in standard form. If a=1, solving the equation is much simpler. First, you always solve the equation in standard form by using the Diagonal Sum Method. If it fails to find answer, then you can positively conclude that the equation is not factorable, and consequently, the quadratic formula must be used. In the second step, solve the equation by using the quadratic formula.

Here are two ways to know if a given quadratic equations can be factored (can be solved by factoring). 1. Calculate the Discriminant D = b^2 - 4ac. When D is a perfect square (its square root is a whole number), then the given equation can be factored. 2. Solve the equation by using the new Diagonal Sum method (Amazon e-book 2010). This method directly finds the 2 real roots without having to factor the equation. Solving usually requires fewer than 3 trials. If this method fails to get the answer, then we can conclude that the equation can not be factored, and consequently the quadratic formula must be used.

Yes FOIL method can be used with quadratic expressions and equations

There are 5 existing methods in solving quadratic equations. For the first 4 methods (quadratic formula, factoring, graphing, completing the square) you can easily find them in algebra books. I would like to explain here the new one, the Diagonal Sum Method, recently presented in book titled:"New methods for solving quadratic equations and inequalities" (Trafford 2009). It directly gives the 2 roots in the form of 2 fractions, without having to factor the equation. The innovative concept of the method is finding 2 fractions knowing their Sum (-b/a) and their Product (c/a). It is very fast, convenient and is applicable whenever the given quadratic equation is factorable. In general, it is hard to tell in advance if a given quadratic equation can be factored. However, if this new method fails to find the answer, then we can conclude that the equation can not be factored, and consequently, the quadratic formula must be used. This new method can replace the trial-and-error factoring method since it is faster, more convenient, with fewer permutations and fewer trials.

In general, there are two steps in solving a given quadratic equation in standard form ax^2 + bx + c = 0. If a = 1, the process is much simpler. The first step is making sure that the equation can be factored? How? In general, it is hard to know in advance if a quadratic equation is factorable. I suggest that you use first the new Diagonal Sum Method to solve the equation. It is fast and convenient and can directly give the 2 roots in the form of 2 fractions. without having to factor the equation. If this method fails, then you can conclude that the equation is not factorable, and consequently, the quadratic formula must be used. See book titled:" New methods for solving quadratic equations and inequalities" (Trafford Publishing 2009) The second step is solving the equation by the quadratic formula. This book also introduces a new improved quadratic formula, that is easier to remember by relating the formula to the x-intercepts with the parabola graph of the quadratic function.

get a life and hobbies then this question wont even be relevent

There is a new method, called Diagonal Sum Method, that quickly and directly give the 2 roots without having to factor the equation. The innovative concept of this method is finding 2 fractions knowing their sum (-b/a) and their product (c/a). It is fast, convenient and is applicable to any quadratic equation in standard form ax^2 + bx + c = 0, whenever it can be factored. If it fails to find answer, then the equation is not factorable, and consequently, the quadratic formula must be used. So, I advise you to proceed solving any quadratic equation in 2 steps. First, find out if the equation can be factored? How?. Use this new method to solve it. It usually takes fewer than 3 trials. If its fails then use the quadratic formula to solve it in the second step. See book titled:" New methods for solving quadratic equations and inequalities" (Trafford Publishing 2009)

People also asked