Actual Mechanical Advantage is the ratio of Force outputed to Force inputed.
(AMA=Fo/Fi)
Similarly, IMA (Ideal Mechanical Advantage) = di/do
the formula for determing ideal mechanical advantage is effort divided by resistance
The ideal mechanical advantage of a wheel and axle system is calculated by dividing the radius of the wheel by the radius of the axle. The formula is: IMA = radius of wheel / radius of axle.
The formula to calculate the ideal mechanical advantage (IMA) of a wheel and axle when the input force is applied to the axle is: IMA = Radius of wheel (Rw) / Radius of axle (Ra) Where Rw is the radius of the wheel and Ra is the radius of the axle.
Mechanical Advantage: F(out)/ F(in) Actual Mechanical Advantage is the ratio of Force outputed to Force inputed. (AMA=Fo/Fi) Similarly, IMA (Ideal Mechanical Advantage) = di/do
Mechanical Advantage: F(out)/ F(in) Actual Mechanical Advantage is the ratio of Force outputed to Force inputed. (AMA=Fo/Fi) Similarly, IMA (Ideal Mechanical Advantage) = di/do
No, the ideal is without friction.
Ideal Mechanical Advantage can be found using this formula IMA = DE / DR . Ideal Mechanical Advantage is a theoretical calculation, AMA,Êactual mechanical advantage is calculated with this formula, AMA = R / Eactual .
The ideal mechanical advantage of a ramp is directly related to the height of the ramp. The ideal mechanical advantage is calculated as the ratio of the length of the ramp to its vertical height. So, the higher the ramp, the greater the ideal mechanical advantage.
Mechanical Advantage = Effort/Load
it is less than the ideal mechanical advantage
Mechanical advantage is determined by physical measurement of the input and output forces and takes into account energy loss due to deflection, friction, and wear. The ideal mechanical advantage, meanwhile, is the mechanical advantage of a device with the assumption that its components do not flex, there is no friction, and there is no wear.
Ideal mechanical advantage is a numerical ratio. It's a naked number without a unit.