It helps to think about imaginary and complex numbers graphically.
Euler's Formula (see related link): eiΘ = cos(Θ) + i sin(Θ) {Θ is in radians}. Note that both eiΘ and [cos(Θ) + i sin(Θ)] have a magnitude of 1, so multiply by the magnitude: AeiΘ = Acos(Θ) + Ai sin(Θ). You now have a graphical representation of complex numbers, with real numbers on the horizontal axis, pure imaginaries on the vertical axis, and all other complex numbers placed on the 'complex plane'. The angle is a direction, from the origin, and the magnitude A tells how far away from the origin that the position is.
With pure imaginary numbers you can have Θ = pi/2 radians (90°, vertical), and let A be either positive or negative (up or down). From the rules for exponents and powers, you now have the imaginary number z = ei*pi/2, and (ex)n = ex*n, so zn = (ei*pi/2)n = ei*n*pi/2 , so switching to degrees for simplicity:
n Θ
0 0° (Points to the right: positive real)
1 90° (Pointing straight up: imaginary positive number)
2 180° (Points to the left: real negative number)
3 270° (Points straight down: imaginary negative)
4 360° (Points to the right: real positive ), same as 0°
Note it goes in a circle and repeats. Odd integer values of n will be pure imaginary and even integers will be real numbers. Non-integers will put the angle so it is a complex number. Negative exponents cause it to move in a clockwise direction on the circle, rather than counterclockwise (for positive exponents).
Now that you know the direction, you only need to take An, as a power, and then point it in the proper direction. So if the power of A yields a positive number, the answer will be in the direction, but if it yields a negative number (odd integer powers of a negative A), then it's in the opposite direction (add 180° to the angle).
See the answer to the related question: 'How do you solve the power of an imaginary number?' (Link below)
If a number is pure imaginary then it has no real component. If it is a real number, then there is no imaginary component. If it has both real and imaginary components, then it is a complex number.
an imaginary number is imaginary so no (i guess) this answer kind of sucks
-125 is NOT an imaginary number.
An imaginary number is a number that has the square root of -1 as one of its factors.
See the answer to the related question: 'How do you solve the power of an imaginary number?' (Link below)
'e' is an imaginary number, multiplied by anything gives an imaginary result
14 = ?. This question requires some math skills. Okay, First of all, this requires imaginary numbers. You need to replace 1 with i. i = an imaginary number. So if 1 to the 4th power means, 1 to itself four times, replace one with an imaginary number. so i to the 4th power = x. x = i to the 4th power. Change i to the 4th power, to 2i to the 2nd power. 2i to the 2nd power = x. So change that to i to the 1st power. So i to the 1st power = 1/2x. Now you can solve this by isolating x. You multiply both sides by 1/2. Now you will get the answer, which is 1/2i to the 1st power. the answer is, 2 and 1/2i.
Yes. The number 1 + i is imaginary but not pure imaginary, while 5i is pure imaginary.
If a number is pure imaginary then it has no real component. If it is a real number, then there is no imaginary component. If it has both real and imaginary components, then it is a complex number.
an imaginary number is imaginary so no (i guess) this answer kind of sucks
x = the square root of -1, an imaginary number written as a lower case italic i.
That depends a lot on what you want to solve. In general, you can do quite a lot by simply considering the complex number like any polynomial, and remembering that i2 = -1. For example, to add two complex numbers, you simply add the real and the imaginary part of both numbers.
-125 is NOT an imaginary number.
A number to a negative power is equal to One divided by number to its positive power. So, x^-2 is equal to 1/x2.
That quotient would be an imaginary number. The actual number depends on exactly what imaginary number you divide the 7 by.
It is a pure imaginary number.Since (a+bi)-(a-bi) = 2bi, it is a pure imaginary number (it has no real component).