You use the distributive property. That is, you look for a common factor, divide each of the terms within parentheses, brackets, or whatever by this common factor, and write the common factor once outside the parentheses. For example:
10x + 15y
Here you have a common factor of 5, so you can take this factor out:
10x + 15y
= (10x + 15y)
= 5(2x + 3y)
The greatest common factor is the largest of the common factors.
There are not common factors of 14. Common factors are factors that it and another number share - factors they have in common. A single number cannot have common factors. 14 does have factors. Its factors are 1, 2, 7, and 14. 14 and 16 have common factors of 1 and 2. 14 and 21 have common factors of 1 and 7. 14 and 31 have a common factor of 1 only, which means they are relatively prime. 14 and 70 have common factors of 1, 2, 7, and 14.
There are no common factors of 77 because there cannot be common factors without two or more numbers to compare. Common factors are factors that the numbers being compared have in common. Examples: The common factors of 14 and 77 are 1 and 7. The common factors of 66 and 77 are 1 and 11. The common factors of 77 and 154 are 1, 7, 11, and 77.
The common factors are 1.
There are not common factors of 138 because there cannot be common factors without two or more numbers to compare. Common factors are factors that the numbers being compared have in common. The factors of 138 are 1, 2, 3, 6, 23, 46, 69, and 138.
well i dont now
You multiply out brackets, remove common factors from fractions, combine like terms.
It depends on factors such as height, gender, and activity level.
The greatest common factor is the largest of the common factors.
There isn't one...there are many, depending on a number of factors...that is why they are called tax brackets, and even then many factors contribute.
There are not common factors of 14. Common factors are factors that it and another number share - factors they have in common. A single number cannot have common factors. 14 does have factors. Its factors are 1, 2, 7, and 14. 14 and 16 have common factors of 1 and 2. 14 and 21 have common factors of 1 and 7. 14 and 31 have a common factor of 1 only, which means they are relatively prime. 14 and 70 have common factors of 1, 2, 7, and 14.
There are no common factors of 77 because there cannot be common factors without two or more numbers to compare. Common factors are factors that the numbers being compared have in common. Examples: The common factors of 14 and 77 are 1 and 7. The common factors of 66 and 77 are 1 and 11. The common factors of 77 and 154 are 1, 7, 11, and 77.
The different types of brackets are: * round brackets, open brackets or parentheses: ( ) * square brackets, closed brackets or box brackets: [ ] * curly brackets, squiggly brackets, swirly brackets, braces, or chicken lips: { } * angle brackets, diamond brackets, cone brackets or chevrons: < > or ⟨ ⟩
The different types of brackets are: * round brackets, open brackets or parentheses: ( ) * square brackets, closed brackets or box brackets: [ ] * curly brackets, squiggly brackets, swirly brackets, braces, or chicken lips: { } * angle brackets, diamond brackets, cone brackets or chevrons: < > or ⟨ ⟩
The common factors are: 1, 2
Usually they are opposite processes. Factorisation is taking an algebraic expression and partitioning it into factors in brackets (or parentheses). Expansion is taking such brackets and multiplying them out to a simple - if lengthy - expression.
round brackets, open brackets or parentheses: ( )square brackets, closed brackets or box brackets: [ ]curly brackets, squiggly brackets, swirly brackets, braces, or chicken lips: { }angle brackets, diamond brackets, cone brackets or chevrons: < > or ⟨ ⟩