a more detailed solution of an answer
Chat with our AI personalities
One significant feature of complex numbers is that all polynomial equations of order n, in the complex field, have n solutions. When multiple roots are Given any set of complex numbers {a(0),  … , a(n)}, such that at least one of a(1) to a(n) is non-zero, the equation a(n)*z^n + a(n-1)*z^(n-1) + ... + a(0) has at least one solution in the complex field. This is the Fundamental Theorem of Algebra and establishes the set of Complex numbers as a closed field. [a(0), ... , a(n) should be written with suffices but this browser has decided not to be cooperative!] The above solution is the complex root of the equation. In fact, if the equation is of order n, that is, if the coefficient a(n) is non-zero then, taking account of the multiplicity, the equation has exactly n roots (some of which may be real).
You multiply the numerator and the denominator of the complex fraction by the complex conjugate of the denominator.The complex conjugate of a + bi is a - bi.
You just plug in the coefficients, and do the normal operations. Of course you have to know how to calculate with complex numbers. Assuming the coefficients are real, you may at some moment get the root of a negative number. Say, for instance, you have the square root of minus 2, then the solution of that part is the square root of plus 2, multiplied by i.If the original coefficients are complex, you may have to calculate the root of a complex number. This is a little more complicated. For this, you convert the complex number to polar coordinates - that is, to a length and an angle. Then, to actually take the square root, you take half the angle, and the square root of the distance - and convert back to rectangular coordinates (separating the real and the imaginary part). (For the second solution, add 180 degrees to the angle.)
optimal solution is the possible solution that we able to do something and feasible solution is the solution in which we can achieve best way of the solution
A complex Query is a quiery that is much more complex than a normal quiery so search up complex then quiry!!!!