No. There is no platinum ratio.
The ratio is 1:2The ratio is 1:2The ratio is 1:2The ratio is 1:2
The ratio of C12H22O11 to WHAT!
The ratio of volumes is directly proportional to the cube of the ratio of their sides. And, incidentally, all cubes are similar.
The ratio is 1:25 4 percent as a ratio is 0.04 : 1
The velocity ratio of a pulley system is the ratio of the rotational speed of the driving pulley to the driven pulley. It indicates how the speed of the driven pulley relates to the speed of the driving pulley. The formula is: Velocity Ratio = Diameter of driving pulley / Diameter of driven pulley.
To calculate the velocity ratio in a pulley system, divide the diameter of the driving pulley by the diameter of the driven pulley. This ratio indicates how much faster or slower the driven pulley rotates compared to the driving pulley. It helps to determine the speed or force transmission in the pulley system.
The velocity ratio of a single fixed pulley is 1. This means that the input and output speeds are equal. The pulley simply changes the direction of the force applied.
to avoid the slip , increase the velocity ratio and increase belt and pulley life... thanku..:)
Load "L" is attached to the movable pulley. A rope is fixed at a point in ceiling that passes through the movable pulley. In order to lift the load "L" by "X" meters, the effort "E" needs to travel the distance of 2X meters. (The entire rope needs to be pulled by "E" for a distance of 2X.) Now, Velocity Ratio equals (Distance traveled by "E") divided by (Distance traveled by "L") So it becomes : 2X/X. This equals to 2 Since it is a ratio. it has no units of measurement. -Kiran Karnik
To calculate the friction in a pulley, you can use the formula: Friction = ยต * N, where ยต is the coefficient of friction and N is the normal force acting on the pulley. The coefficient of friction represents how "rough" the surfaces in contact are. By multiplying the coefficient of friction with the normal force, you can determine the amount of friction in the pulley system.
The gear ratio of a train, also known as its speed ratio, is the ratio of the angular velocity of the input gear to the velocity of the output gear. The gear ratio is very important when it comes to physics.
Drive Pulley = pulley on motor Driven Pulley = pulley on blower First determine your Ratio - divide large pulley size by small pulley size this will give you gear ratio, Example 2" drive pulley and a 4" Driven Pulley = 2:1 gear ratio If you know your motor shaft RPM divide that number by the ratio to get the RPM of the driven pulley, if your shaft rpm is 1800 rpm you would divide 1800 by 2 which would = 900 rpm on your driven pulley if your drive pulley is larger than than your driven pulley you multiply the rpm by the ratio example 1800 rpm x 2 = 3600 rpm
Friction can have an impact on velocity ratio by reducing the efficiency of a system. Friction can transfer energy into heat, causing a loss in velocity and making it more difficult to maintain a consistent velocity ratio. Reducing friction through lubrication or other means can help improve the velocity ratio.
Velocity ratio is the ratio of the distance moved by the effort to the distance moved by the load in a simple machine. It represents the trade-off between force and distance in a machine. A higher velocity ratio indicates that the machine can move the load a greater distance with a smaller input force.
The ideal mechanical advantage is the ratio of the input force to the output force in a system, while the velocity ratio is the ratio of the velocity of the input force to the velocity of the output force. The relationship between them depends on the type of machine, but in general, a higher ideal mechanical advantage tends to be associated with a lower velocity ratio, and vice versa.
The angular velocity of a pulley turning 1800 rpm is 60 pi radians per second.