answersLogoWhite

0

What else can I help you with?

Continue Learning about Basic Math

How is adding polynomials like adding integers?

The numbers can have a positive or negative sign.


What are three rational numbers between 15 and 16?

Oh, what a lovely question! Let's paint a happy little picture with numbers. Three rational numbers between 15 and 16 could be 15.1, 15.5, and 15.9. Just like adding different colors to a painting, numbers can be placed in between other numbers to create a beautiful sequence. Happy calculating!


Can you add two irrational numbers to get a rational number?

Yes Yes, the sum of two irrational numbers can be rational. A simple example is adding sqrt{2} and -sqrt{2}, both of which are irrational and sum to give the rational number 0. In fact, any rational number can be written as the sum of two irrational numbers in an infinite number of ways. Another example would be the sum of the following irrational quantities [2 + sqrt(2)] and [2 - sqrt(2)]. Both quantities are positive and irrational and yield a rational sum. (Four in this case.) The statement that there are an infinite number of ways of writing any rational number as the sum of two irrational numbers is true. The reason is as follows: If two numbers sum to a rational number then either both numbers are rational or both numbers are irrational. (The proof of this by contradiction is trivial.) Thus, given a rational number, r, then for ANY irrational number, i, the irrational pair (i, r-i) sum to r. So, the statement can actually be strengthened to say that there are an infinite number of ways of writing a rational number as the sum of two irrational numbers.


Why is the sum of any two rational numbers a rational number?

== == The set of natural numbers is {1, 2, 3, ...} The set of integers is {..., -3, -2, -1, 0, 1, 2, 3, ...} All natural numbers are integers. A rational number is an integer 'A' divided by a natural number 'B'; i.e. A / B. Suppose we add two rational numbers: A / B + C / D This is algebraically equal to (AD + BC) / BD Since A and C are integers and B and D are natural numbers, then AD and BC are integers because two integers multiplied yields an integer. If you add these together, you get an integer. So we have an integer (AD + BC) on the top. B and D are natural numbers. Multiply them and you get a natural number. So we have a natural number BD on the bottom. Since (AD + BC) / BD is a rational number, A / B + C / D is a rational number. OLD ANSWER: Since a rational number is, by definition, one that can be written a a ratio of 2 integers, adding 2 rationals is tantamount to adding 2 fractions, which always produces a fraction (ratio of 2 integers) for the answer, so the answer is, by definition, rational. llllaaaaaaaaaaaaaalllllllllaaaaaaaaaalllllllllllaaaaaaaaaaaalaaaaaaaa


What is similar to subtracting two positive integers?

Subtracting two positive fractional numbers, or adding one positive and one negative integer.