Two or more straight lines meeting at one point.
The system of equations can have zero solutions, one solution, two solutions, any finite number of solutions, or an infinite number of solutions. If it is a system of LINEAR equations, then the only possibilities are zero solutions, one solution, and an infinite number of solutions. With linear equations, think of each equation describing a straight line. The solution to the system of equations will be where these lines intersect (a point). If they do not intersect at all (or maybe two of the lines intersect, and the third one doesn't) then there is no solution. If the equations describe the same line, then there will be infinite solutions (every point on the line satisfies both equations). If the system of equations came from a real world problem (like solving for currents or voltages in different parts of a circuit) then there should be a solution, if the equations were chosen properly.
visual,intuitive
-1
Cramer's rule is applied to obtain the solution when a system of n linear equations in n variables has a unique solution.
Provide a system of equations in slope-intercept form that has one solution. Using complete sentences, explain why this system has one solution.
A system of equations with exactly one solution intersects at a singular point, and none of the equations in the system (if lines) are parallel.
one solution
If you want to know more about 3D UV Curing System and purchase it Only one of the solution APL Machinery Pvt. Ltd.
a linear equation
The coordinates of the point satisfy each of the equations.
A system of linear equations can only have: no solution, one solution, or infinitely many solutions.
NO! A linear system can only have one solution (the lines intersect at one point), no solution (the lines are parallel), and infinitely many solutions (the lines are equivalent).
The solution to a system on linear equations in nunknown variables are ordered n-tuples such that their values satisfy each of the equations in the system. There need not be a solution or there can be more than one solutions.
To solve a system means to find the x- and y-values for which both of the equations are true. Systems of linear equations can be solved using a variety of methods. One method is to graph the equations as two lines and examine them. If the lines intersect at exactly one point, there is one solution to the system, and the system is called consistent. If the two lines are on top of one another, there are an infinite number of solutions, because each point on the line is considered a solution (this system is called dependent). If the two lines are parallel, there is no solution (this system is called inconsistent). To solve a system means to find the x- and y-values for which both of the equations are true. Systems of linear equations can be solved using a variety of methods. One method is to graph the equations as two lines and examine them. If the lines intersect at exactly one point, there is one solution to the system, and the system is called consistent. If the two lines are on top of one another, there are an infinite number of solutions, because each point on the line is considered a solution (this system is called dependent). If the two lines are parallel, there is no solution (this system is called inconsistent). To solve a system means to find the x- and y-values for which both of the equations are true. Systems of linear equations can be solved using a variety of methods. One method is to graph the equations as two lines and examine them. If the lines intersect at exactly one point, there is one solution to the system, and the system is called consistent. If the two lines are on top of one another, there are an infinite number of solutions, because each point on the line is considered a solution (this system is called dependent). If the two lines are parallel, there is no solution (this system is called inconsistent). To solve a system means to find the x- and y-values for which both of the equations are true. Systems of linear equations can be solved using a variety of methods. One method is to graph the equations as two lines and examine them. If the lines intersect at exactly one point, there is one solution to the system, and the system is called consistent. If the two lines are on top of one another, there are an infinite number of solutions, because each point on the line is considered a solution (this system is called dependent). If the two lines are parallel, there is no solution (this system is called inconsistent).
perpendicular
unstable