When you take the derivative of a function, you are seeking a variation of that function that provides you with the slope of the tangent (instantaneous slope) at any value of (x). For example, the derivative of the function f(x)=x^2 is f'(x)=2x. Notice that the derivative is denoted by the apostrophe inside the f and (x). Also note that at x=0, f'(x)=0, which means that at x=0 the slope of the tangent is zero, which is correct for the function y=x^2.
Chat with our AI personalities
(a/b)'= (ba'-ab')/(b²)
It is used in physics all the time. For example, acceleration is the derivative of velocity which is a derivative of position with respect to time. Calculating the amount of work done in a vector field (like an electrical field) also uses calculus.
Newton is the named founder of Calculus. Yet there is controversy because it is claimed that Leibniz stole Newton's Calculus notes and took all credit for Calculus. But to this day Leibniz's integral and derivative notation is more commonly used that Newton's which was found confusing.
Because the derivative of e^x is e^x (the original function back again). This is the only function that has this behavior.
Calculus is a branch of mathematics which came from the thoughts of many different individuals. For example, the Greek scholar Archimedes (287-212 B.C.) calculated the areas and volumes of complex shapes. Isaac Newton further developed the notion of calculus. There are two branches of calculus which are: differential calculus and integral calculus. The former seeks to describe the magnitude of the instantaneous rate of change of a graph, this is called the derivative. For example: the derivative of a position vs. time graph is a velocity vs. time graph, this is because the rate of change of position is velocity. The latter seeks to describe the area covered by a graph and is called the integral. For example: the integral of a velocity vs. time graph is the total displacement. Calculus is useful because the world is rarely static; it is a dynamic and complex place. Calculus is used to model real-world situations, or to extrapolate the change of variables.