Too many unknowns in your question. Is this 3% by mass or by volume? Does the quantity of final solution matter? IE do you need 100 ml, 1 liter or 5000ml. What is the density of the hydrogen peroxide? (needed for a volume % problem)
Assuming you mean 3% by mass, then that means 3 g of hydrogen peroxide in 100 g of solution. 300 micromolar = 3 x 10-4 molar. Assuming you want to make one liter then you need 3 x 10-4 moles of peroxide. The molar mass of peroxide is 34 g/mole.
34 g/mole x 3 x 10-4 moles = 1.02 x 10-2 grams of peroxide
1.02 x 10-2 grams / .03 = 0.34 grams of the original solution.
Weigh (mass) accurately 0.34 g of the original solution in a 1 liter volumetric flask. Add distilled water until the total volume is 1 liter.
To convert micrograms (μg) to micromoles (μmol), you need to know the molar mass of the substance. First, convert micrograms to grams by dividing by 1,000,000. Then, divide the grams by the molar mass to get micromoles. The formula is: micromoles = (micrograms / molar mass).
To find the percent composition of oxygen in Na2O, find the total molar mass of the compound. Then, divide the molar mass of oxygen by the molar mass of the compound, and multiply by 100% to get the percent oxygen.
The density of 35 wt% sulfuric acid is 1.174 g/cm^3. To convert weight percent to molarity, you first need to calculate the molar mass of sulfuric acid (98.08 g/mol). Then, using the density and molar mass, you can calculate the molarity (11.9 M) using the formula: Molarity = (wt% * density) / (molar mass).
To prepare a 0.1 N solution of K2Cr2O7, you need to calculate the molar mass of K2Cr2O7 and use the formula for normality. By dividing the given weight by the molar mass, you can determine the number of moles present, and then calculate the normality using the volume of the solution.
To determine the molecular formula from the given molar mass and percent composition, you can follow these steps: Convert the percent composition to grams for each element present in the compound. Calculate the number of moles of each element using the molar mass and the grams of each element. Divide the moles of each element by the smallest number of moles to get the mole ratio. Use the mole ratio to determine the empirical formula. Calculate the empirical formula mass and compare it to the given molar mass to find the multiplier needed to get the molecular formula.
To convert micrograms (μg) to micromoles (μmol), you need to know the molar mass of the substance. First, convert micrograms to grams by dividing by 1,000,000. Then, divide the grams by the molar mass to get micromoles. The formula is: micromoles = (micrograms / molar mass).
To find the percent composition of oxygen in Na2O, find the total molar mass of the compound. Then, divide the molar mass of oxygen by the molar mass of the compound, and multiply by 100% to get the percent oxygen.
The density of 35 wt% sulfuric acid is 1.174 g/cm^3. To convert weight percent to molarity, you first need to calculate the molar mass of sulfuric acid (98.08 g/mol). Then, using the density and molar mass, you can calculate the molarity (11.9 M) using the formula: Molarity = (wt% * density) / (molar mass).
The molar mass of sulfur dioxide (SO2) is 64.06 g/mol. The molar mass of sulfur is 32.06 g/mol. Calculate the mass percent of sulfur in SO2 using the formula (mass of sulfur / mass of SO2) x 100%. This gives a mass percent of sulfur in SO2 as 50%.
To prepare a 0.1 N solution of K2Cr2O7, you need to calculate the molar mass of K2Cr2O7 and use the formula for normality. By dividing the given weight by the molar mass, you can determine the number of moles present, and then calculate the normality using the volume of the solution.
how temperature is measured using 8051 micro-controler?
To determine the molecular formula from the given molar mass and percent composition, you can follow these steps: Convert the percent composition to grams for each element present in the compound. Calculate the number of moles of each element using the molar mass and the grams of each element. Divide the moles of each element by the smallest number of moles to get the mole ratio. Use the mole ratio to determine the empirical formula. Calculate the empirical formula mass and compare it to the given molar mass to find the multiplier needed to get the molecular formula.
To determine the molality of a solution using the mass percent of the solute, you need to first convert the mass percent to grams of solute per 100 grams of solution. Then, calculate the moles of solute using its molar mass. Finally, divide the moles of solute by the mass of the solvent in kilograms to find the molality of the solution.
The molar mass of sodium hydroxide (NaOH) is approximately 40 g/mol. To prepare a 0.10 M solution in 100 mL, you would need 1.0 g of NaOH. This can be calculated using the formula: mass (g) = molarity (M) x volume (L) x molar mass (g/mol).
Measuring strain using micro-controller is simple and easy. When measuring using micro-controller you use points and condensers.
To prepare 0.1 Molar EDTA solution, dissolve 37.2 g of EDTA disodium salt dihydrate in 1 liter of distilled water. Adjust the pH to around 8 using NaOH pellets. Finally, adjust the final volume by adding more distilled water if needed.
Each case is different with the INS. There is no specific percentage for you to get a Visa if using a lawyer.