Most electron affinities are negative because when an electron is added to an atom, energy is released. This released energy causes the system to become more stable, resulting in a negative change in energy. The negative sign indicates that energy is released during the process.
Chat with our AI personalities
The halogens, specifically the group 17 elements, have the most negative electron affinities. This is because they have a strong attraction for gaining an electron to achieve a stable electron configuration with a full outer shell. Fluorine has the highest electron affinity among the halogens.
The halogen group in the periodic table releases the most energy by gaining an electron because they have a high electron affinity and tend to form stable, energy-releasing compounds when they gain an electron to achieve a full outer electron shell.
Chlorine (Cl) would most likely have a positive electron affinity. Typically, elements with high electron affinities are found on the right side of the periodic table, closer to the noble gases. Among the choices given, Argon (Ar) is a noble gas and has a positive electron affinity.
An element with a large negative electron affinity is more likely to form a negative ion because it strongly attracts electrons to achieve a stable electron configuration. This results in the formation of negatively charged ions.
Chlorine becomes a negative ion by gaining one electron to achieve a full outer electron shell, following the octet rule which states that atoms are most stable when their outer electron shell is filled with 8 electrons.