The mean and standard deviation. If the data really are normally distributed, all other statistics are redundant.
BMI varies from person to person and one measure of this variability is the standard deviation. Assuming the BMI is approximately normally distributed, only around 0.135% of the people will have results that are -3 sd or lower.
Yes, to approximately standard normal.If the random variable X is approximately normal with mean m and standard deviation s, then(X - m)/sis approximately standard normal.
A food processor packages orange juice in small jars. The weights of the filled jars are approximately normally distributed with a mean of 10.5 ounces and a standard deviation of 0.3 ounce. Find the proportion of all jars packaged by this process that have weights that fall below 10.875 ounces.
The Miller Analogies Test scores have a mean of 400 and a standard deviation of 25, and are approximately normally distributed.z = ( 351.5 - 400 ) / 25 = -1.94That's about the 2.6 percentile.(Used wolframalpha.com with input Pr [x < -1.94] with x normally distributed with mean 0 and standard deviation 1.)
68.2%
(X-61)/10.2=.878 X = 69.95 approximately 70
There are approximately 16.4% of students who score below 66 on the exam.
A particular fruit's weights are normally distributed, with a mean of 760 grams and a standard deviation of 15 grams. If you pick one fruit at random, what is the probability that it will weigh between 722 grams and 746 grams-----A particular fruit's weights are normally distributed, with a mean of 567 grams and a standard deviation of 25 grams.
d. All the above.
It is not! It is very approximately so and the key word there is approximately.
No. The variance of any distribution is the sum of the squares of the deviation from the mean. Since the square of the deviation is essentially the square of the absolute value of the deviation, that means the variance is always positive, be the distribution normal, poisson, or other.