Sets are not disjants, they are disjoint. And two sets are disjoint if they have nothing in common. For example, the set {1,3,5} has nothing in common with the set {2,4,6}. So they are disjoint.
Joint sets:Joint sets are those which have common elements Disjoint sets : A pair of sets is said to be disjoint if their intersection is the empty set. That is to say, if they share no elements. All of the usual operations can be performed on disjoint sets, so long as the operation makes sense. (For example, taking the complement of one with respect to the other could pose problems.)
Two sets are considered disjoint if they have no elements in common.
ExplanationFormally, two sets A and B are disjoint if their intersection is the empty set, i.e. if This definition extends to any collection of sets. A collection of sets is pairwise disjoint or mutually disjoint if, given any two sets in the collection, those two sets are disjoint.Formally, let I be an index set, and for each i in I, let Ai be a set. Then the family of sets {Ai : i ∈ I} is pairwise disjoint if for any i and j in I with i ≠ j,For example, the collection of sets { {1}, {2}, {3}, ... } is pairwise disjoint. If {Ai} is a pairwise disjoint collection (containing at least two sets), then clearly its intersection is empty:However, the converse is not true: the intersection of the collection {{1, 2}, {2, 3}, {3, 1}} is empty, but the collection is not pairwise disjoint. In fact, there are no two disjoint sets in this collection.A partition of a set X is any collection of non-empty subsets {Ai : i ∈ I} of X such that {Ai} are pairwise disjoint andSets that are not the same.
When two sets do not have any elements common between them,they are said to be disjoint.
Joint sets are sets with common element/s. Disjoint sets are sets without any common element/s.
No, only if both sets are empty. The intersection of disjoint sets is always empty.
Yes,Because not all disjoint no equivalent other have disjoint and equivalent
ExplanationFormally, two sets A and B are disjoint if their intersection is the empty set, i.e. if This definition extends to any collection of sets. A collection of sets is pairwise disjoint or mutually disjoint if, given any two sets in the collection, those two sets are disjoint.Formally, let I be an index set, and for each i in I, let Ai be a set. Then the family of sets {Ai : i ∈ I} is pairwise disjoint if for any i and j in I with i ≠ j,For example, the collection of sets { {1}, {2}, {3}, ... } is pairwise disjoint. If {Ai} is a pairwise disjoint collection (containing at least two sets), then clearly its intersection is empty:However, the converse is not true: the intersection of the collection {{1, 2}, {2, 3}, {3, 1}} is empty, but the collection is not pairwise disjoint. In fact, there are no two disjoint sets in this collection.A partition of a set X is any collection of non-empty subsets {Ai : i ∈ I} of X such that {Ai} are pairwise disjoint andSets that are not the same.
Two sets are said to be "disjoint" if they have no common element - their intersection is the empty set. As far as I know, "joint" is NOT used in the sense of the opposite of disjoint, i.e., "not disjoint".
Two sets are said to be "disjoint" if they have no common element - their intersection is the empty set. As far as I know, "joint" is NOT used in the sense of the opposite of disjoint, i.e., "not disjoint".
Two sets are disjoint if there are elements that belong to both. Two sets are overlapping if there is at least one elements that belongs to both.