A graph is a function if every input (x-value) corresponds to only one output (y-value). One way to check for this is to perform the vertical line test: if a vertical line intersects the graph at more than one point, the graph is not a function.
The range of a function is the set of Y values where the equation is true. Example, a line passing through the origin with a slope of 1 that continues towards infinity in both the positive and negative direction will have a range of all real numbers, whereas a parabola opening up with it's vertex on the origin will have a range of All Real Numbers such that Y is greater than or equal to zero.
Vertical transformations involve shifting the graph up or down, affecting the y-values, while horizontal transformations involve shifting the graph left or right, affecting the x-values. Vertical transformations are usually represented by adding or subtracting a value outside of the function, while horizontal transformations are represented by adding or subtracting a value inside the function.
The number of boxes on graph paper depends on the size and dimensions of the paper. A standard grid paper may have 4 squares per inch, resulting in 16 boxes per square inch. However, larger grid papers may have more boxes.
A bar graph or histogram would be suitable to show the distribution of ages of kids in a classroom. Each bar or column would represent a specific age group, making it easy to compare the different age ranges within the class.
Graph each "piece" of the function separately, on the given domain.
A piecewise function is a function defined by two or more equations. A step functions is a piecewise function defined by a constant value over each part of its domain. You can write absolute value functions and step functions as piecewise functions so they're easier to graph.
piecewise
One such function is [ Y = INT(x) ]. (Y is equal to the greatest integer in ' x ')
f is a piecewise smooth funtion on [a,b] if f and f ' are piecewise continuous on [a,b]
A piecewise function can be one-to-one, but it is not guaranteed to be. A function is considered one-to-one if each element in the domain maps to a unique element in the range. In the case of a piecewise function, it depends on the specific segments and how they are defined. If each segment of the piecewise function passes the horizontal line test, then the function is one-to-one.
A piecewise defined function is a function which is defined symbolically using two or more formulas
All differentiable functions need be continuous at least.
yes :D
Piecewise <3
for a piecewise function, the domain is broken into pieces, with a different rule defining the function for each piece
It could represent a point whose coordinates do satisfy the requirements of the function.