An incandescent bulb has a filament that has a resistance. The value of the resistance determines the current that will flow for a given supply voltage. The heat generated by the current flowing through the filament gives off light. As the resistance of the filament decreases the current increases and you get more light.
It means exactly what it sounds like. The resistance of an incandescent bulb's filament depends on its temperature. A filament has a positive temperature coefficient, which means that its resistance increases as its temperature increases. A typical 40 watt bulb (120 volts) has a cold resistance of about 28 ohms, but its hot, operating resistance is about 360 ohms. If the cold resistance were constant, the bulb would dissipate 379 watts. In fact, cold turn on is the most stressful time for a bulb.
By Ohm's law, resistance is voltage divided by current, so the resistance of a light bulb can be measured by observing the voltage across it simultaneously with observing the current through it. Interestingly, the hot resistance is significantly different that the cold resistance, so measuring resistance with an ohmmeter will not give a meaningful resistance. This is because the resistance of a light bulb has a positive temperature coefficient. Take a typical 60 W 120V light bulb, for instance... Its cold resistance is about 16 Ohms. Calculate current and power at 120 V and you get 7.5 A and 900 W. The truth is that at 60 W, the bulb pulls 0.5 A and has a resistance of 240 Ohms.
42 ohm
there is no voltage and resistance
Two examples of non linear resistance is a diode and a light bulb.
A high-resistance bulb typically has a thicker filament compared to a low-resistance bulb. The thicker filament in a high-resistance bulb can withstand the greater heat generated by the increased resistance, resulting in a longer lifespan for the bulb.
That is e.g. the resistance of a cold bulb before the bulb is lighted and heats up.
3 volt bulb gives the biggest resistance
The cold resistance of a bulb can be approximated by measuring the resistance of the filament with a multimeter when the bulb is turned off and at room temperature. The resistance measured in this state can give an estimation of the cold resistance of the bulb. Keep in mind that this value may not be exact due to factors like the temperature coefficient of resistance and the non-linear behavior of the filament's resistance.
Yes, the resistance of a filament light bulb increases as the bulb gets brighter. This is due to the increase in temperature of the filament, which causes the resistance to go up.
The resistance of a light bulb varies, depending on the type of bulb, the power rating, and the temperature. A typical incandescent 60 watt bulb, for instance has a cold resistance of about 30 ohms, and a hot resistance of about 240 ohms.
The resistance of the filament in a light bulb is(voltage at which the bulb is designed to operate)2/(the rated power/watts of the bulb)
No, the highest wattage bulb will have the lowest resistance.
The resistance of a piece of wire changes with temperature. In a filament bulb the wire is heated to about 3000 degrees C so a large change in resistance can be expected. A 240 v 105 w halogen bulb has a cold resistance of 35 ohms, but when running its resistance is 549 ohms.
It has high resistance.
As per the formula for power (Power (Watt) = Voltage (V) x Current (i) & Resistance (R) = V / i), 25w lamp bulb would have higher resistance compared to that of 5w lamp bulb.
Increasing resistance in a circuit will decrease the current flowing through the bulb, resulting in reduced brightness. This is because the resistance restricts the flow of electrons and diminishes the amount of energy reaching the bulb to produce light.