answersLogoWhite

0

ShearingFor shear mapping (visually similar to slanting), there are two possibilities. For a shear parallel to the x axis has x' = x + ky and y' = y; the shear matrix, applied to column vectors, is:

A shear parallel to the y axis has x' = xand y' = y + kx, which has matrix form:

ReflectionTo reflect a vector about a line that goes through the origin, let be a vector in the direction of the line:

To reflect a point through a plane ax + by + cz = 0 (which goes through the origin), one can use , where is the 3x3 identity matrix and is the three-dimensional unit vector for the surface normal of the plane. If the L2 norm of a,b, and c is unity, the transformation matrix can be expressed as:

Note that these are particular cases of a Householder reflection in two and three dimensions. A reflection about a line or plane that does not go through the origin is not a linear transformation; it is an affine transformation.

User Avatar

Wiki User

13y ago

Still curious? Ask our experts.

Chat with our AI personalities

TaigaTaiga
Every great hero faces trials, and you—yes, YOU—are no exception!
Chat with Taiga
ProfessorProfessor
I will give you the most educated answer.
Chat with Professor
RossRoss
Every question is just a happy little opportunity.
Chat with Ross

Add your answer:

Earn +20 pts
Q: Explain Shearing and reflection as a technique of 2d transformation?
Write your answer...
Submit
Still have questions?
magnify glass
imp