Write a program in c++ that take input in a integer matrix of size 4*4 and find out if the entered matrix is diagonal or not.
It's matrix C.
A Hadamard Matrix is a square matrix composed of 1 or -1. Using a square matrix system the hadamard matrix could be created
#include<iostream> #include<vector> #include<random> template<const size_t R, const size_t C> class Matrix { public: using row_type = int[C]; private: // attributes int m_data[R][C]; public: // construction/assignment Matrix (); Matrix (const Matrix& source); Matrix (Matrix&& source); Matrix& operator= (const Matrix<R,C>& source); Matrix& operator= (Matrix<R,C>&& source); ~Matrix () {} public: // accessors row_type& row (const size_t index) { return m_data[index]; } const row_type& row (const size_t index) const { return m_data[index]; } row_type& operator[] (const size_t index) { return m_data[index]; } const row_type& operator[] (const size_t index) const { return m_data[index]; } size_t size() const { return R * C; } size_t rows() const { return R; } size_t cols() const { return C; } public: // operations Matrix<R,C>& operator+= (const Matrix<R,C>&); Matrix<R,C>& operator-= (const Matrix<R,C>&); }; template<const size_t R, const size_t C> Matrix<R,C>::Matrix() { for (size_t row=0; row<R; ++row) for (size_t col=0; col<C; ++col) m_data[row][col] = 0; } template<const size_t R, const size_t C> Matrix<R,C>::Matrix(const Matrix<R,C>& source) { for (size_t row=0; row<R; ++row) for (size_t col=0; col<C; ++col) m_data[row][col] = source.m_data[row][col]; } template<const size_t R, const size_t C> Matrix<R,C>::Matrix(Matrix<R,C>&& source) { for (size_t row=0; row<R; ++row) for (size_t col=0; col<C; ++col) m_data[row][col] = std::move (source.m_data[row][col]); } template<const size_t R, const size_t C> Matrix<R,C>& Matrix<R,C>::operator= (const Matrix<R,C>& source) { for (size_t row=0; row<R; ++row) for (size_t col=0; col<C; ++col) m_data[row][col] = source.m_data[row][col]; return *this; } template<const size_t R, const size_t C> Matrix<R,C>& Matrix<R,C>::operator= (Matrix<R,C>&& source) { for (size_t row=0; row<R; ++row) for (size_t col=0; col<C; ++col) m_data[row][col] = std::move (source.m_data[row][col]); return *this; } template<const size_t R, const size_t C> Matrix<R,C>& Matrix<R,C>::operator+= (const Matrix<R,C>& rhs) { for (size_t row=0; row<R; ++row) for (size_t col=0; col<C; ++col) m_data[row][col] += rhs.m_data[row][col]; return *this; } template<const size_t R, const size_t C> Matrix<R,C>& Matrix<R,C>::operator-= (const Matrix<R,C>& rhs) { for (size_t row=0; row<R; ++row) for (size_t col=0; col<C; ++col) m_data[row][col] -= rhs.m_data[row][col]; return *this; } template<const size_t R, const size_t C> Matrix<R,C> operator+ (const Matrix<R,C>& lhs, const Matrix<R,C>& rhs) { Matrix<R,C> sum (lhs); return sum += rhs; } template<const size_t R, const size_t C> Matrix<R,C> operator- (const Matrix<R,C>& lhs, const Matrix<R,C>& rhs) { Matrix<R,C> sub (lhs); return sub -= rhs; } template<const size_t R, const size_t C, const size_t R1, const size_t C1> Matrix<R,C1> operator* (const Matrix<R,C>& lhs, const Matrix<R1,C1>& rhs) { static_assert (C==R1, "Matrix dimension mismatch!"); Matrix<R,C1> mul; for (size_t x=0; x!=R; ++x) { for (size_t y=0; y!=C1; ++y) { int prod = 0; for (size_t z=0; z!=C; ++z) { prod += lhs[x][z] * rhs[z][y]; } mul[x][y] = prod; } } return mul; } template<const size_t R, const size_t C> std::ostream& operator<< (std::ostream& os, const Matrix<R,C>& m) { for (size_t row=0; row<R; ++row) { for (size_t col=0; col<C; ++col) { std::cout << m[row][col] << '\t'; } std::cout << std::endl; } return os; } int main() { std::default_random_engine generator; std::uniform_int_distribution<int> distribution (1,9); const size_t rows = 2; const size_t cols = 3; Matrix<rows, cols> a, b; for (size_t row=0; row<rows; ++row) { for (size_t col=0; col<cols; ++col) { a[row][col] = distribution (generator); b[row][col] = distribution (generator); } } std::cout << "Matrix a:\n\n" << a << '\n' << std::endl; std::cout << "Matrix b:\n\n" << b << '\n' << std::endl; std::cout << "Matrix a + b:\n\n" << a + b << '\n' << std::endl; std::cout << "Matrix a - b:\n\n" << a - b << '\n' << std::endl; Matrix<cols, rows> c; for (size_t row=0; row<rows; ++row) { for (size_t col=0; col<cols; ++col) { c[col][row] = distribution (generator); } } std::cout << "Matrix c:\n\n" << c << '\n' << std::endl; std::cout << "Matrix a * c:\n\n" << a * c << '\n' << std::endl; }
C Examples on Matrix OperationsA matrix is a rectangular array of numbers or symbols arranged in rows and columns. The following section contains a list of C programs which perform the operations of Addition, Subtraction and Multiplication on the 2 matrices. The section also deals with evaluating the transpose of a given matrix. The transpose of a matrix is the interchange of rows and columns.The section also has programs on finding the trace of 2 matrices, calculating the sum and difference of two matrices. It also has a C program which is used to perform multiplication of a matrix using recursion.C Program to Calculate the Addition or Subtraction & Trace of 2 MatricesC Program to Find the Transpose of a given MatrixC Program to Compute the Product of Two MatricesC Program to Calculate the Sum & Difference of the MatricesC Program to Perform Matrix Multiplication using Recursion
int matrix[][]; // the matrix to find the max in int max = matrix[0][0]; int r,c; for(r = 0; r < 3; ++r) { for(c = 0; c < 3; ++c) { if(matrix[r][c] > max) { max = matrix[r][c]; } } } // max is now the maximum number in matrix
Write a program in c++ that take input in a integer matrix of size 4*4 and find out if the entered matrix is diagonal or not.
It's matrix C.
matrix
Did you know that memory allocation is not needed to display the matrix? However, the C program is to find the sum of all the elements.
How we can addition Two Matrix plz send coding in C language mahesh dhanotiya astah_mahesh@rediff.com how i can built a square matrix in c,
Find directed graph that has the adjacency matrix Find directed graph that has the adjacency matrix
Yes, do write. That's what you always have to do when you have got a homework-program.
A Hadamard Matrix is a square matrix composed of 1 or -1. Using a square matrix system the hadamard matrix could be created
To find the original matrix of an inverted matrix, simply invert it again. Consider A^-1^-1 = A^1 = A
#include<iostream> #include<vector> #include<random> template<const size_t R, const size_t C> class Matrix { public: using row_type = int[C]; private: // attributes int m_data[R][C]; public: // construction/assignment Matrix (); Matrix (const Matrix& source); Matrix (Matrix&& source); Matrix& operator= (const Matrix<R,C>& source); Matrix& operator= (Matrix<R,C>&& source); ~Matrix () {} public: // accessors row_type& row (const size_t index) { return m_data[index]; } const row_type& row (const size_t index) const { return m_data[index]; } row_type& operator[] (const size_t index) { return m_data[index]; } const row_type& operator[] (const size_t index) const { return m_data[index]; } size_t size() const { return R * C; } size_t rows() const { return R; } size_t cols() const { return C; } void randomise(std::uniform_int_distribution<int>& distribution, std::default_random_engine& generator); public: // operations Matrix<R,C>& operator+= (const Matrix<R,C>&); Matrix<R,C>& operator-= (const Matrix<R,C>&); }; template<const size_t R, const size_t C> void Matrix<R,C>::randomise(std::uniform_int_distribution<int>& distribution, std::default_random_engine& generator) { for (size_t row=0; row!=R; ++row) { for (size_t col=0; col!=C; ++col) { m_data[row][col] = distribution (generator); } } } template<const size_t R, const size_t C> Matrix<R,C>::Matrix() { for (size_t row=0; row<R; ++row) for (size_t col=0; col<C; ++col) m_data[row][col] = 0; } template<const size_t R, const size_t C> Matrix<R,C>::Matrix(const Matrix<R,C>& source) { for (size_t row=0; row<R; ++row) for (size_t col=0; col<C; ++col) m_data[row][col] = source.m_data[row][col]; } template<const size_t R, const size_t C> Matrix<R,C>::Matrix(Matrix<R,C>&& source) { for (size_t row=0; row<R; ++row) for (size_t col=0; col<C; ++col) m_data[row][col] = std::move (source.m_data[row][col]); } template<const size_t R, const size_t C> Matrix<R,C>& Matrix<R,C>::operator= (const Matrix<R,C>& source) { for (size_t row=0; row<R; ++row) for (size_t col=0; col<C; ++col) m_data[row][col] = source.m_data[row][col]; return *this; } template<const size_t R, const size_t C> Matrix<R,C>& Matrix<R,C>::operator= (Matrix<R,C>&& source) { for (size_t row=0; row<R; ++row) for (size_t col=0; col<C; ++col) m_data[row][col] = std::move (source.m_data[row][col]); return *this; } template<const size_t R, const size_t C> Matrix<R,C>& Matrix<R,C>::operator+= (const Matrix<R,C>& rhs) { for (size_t row=0; row<R; ++row) for (size_t col=0; col<C; ++col) m_data[row][col] += rhs.m_data[row][col]; return *this; } template<const size_t R, const size_t C> Matrix<R,C>& Matrix<R,C>::operator-= (const Matrix<R,C>& rhs) { for (size_t row=0; row<R; ++row) for (size_t col=0; col<C; ++col) m_data[row][col] -= rhs.m_data[row][col]; return *this; } template<const size_t R, const size_t C> Matrix<R,C> operator+ (const Matrix<R,C>& lhs, const Matrix<R,C>& rhs) { Matrix<R,C> sum (lhs); return sum += rhs; } template<const size_t R, const size_t C> Matrix<R,C> operator- (const Matrix<R,C>& lhs, const Matrix<R,C>& rhs) { Matrix<R,C> sub (lhs); return sub -= rhs; } template<const size_t R, const size_t C, const size_t R1, const size_t C1> Matrix<R,C1> operator* (const Matrix<R,C>& lhs, const Matrix<R1,C1>& rhs) { static_assert (C==R1, "Matrix dimension mismatch!"); Matrix<R,C1> mul; for (size_t x=0; x!=R; ++x) { for (size_t y=0; y!=C1; ++y) { int prod = 0; for (size_t z=0; z!=C; ++z) { prod += lhs[x][z] * rhs[z][y]; } mul[x][y] = prod; } } return mul; } template<const size_t R, const size_t C> std::ostream& operator<< (std::ostream& os, const Matrix<R,C>& m) { for (size_t row=0; row<R; ++row) { for (size_t col=0; col<C; ++col) { std::cout << m[row][col] << '\t'; } std::cout << std::endl; } return os; } int main() { std::default_random_engine generator; std::uniform_int_distribution<int> distribution (1,9); const size_t rows = 2; const size_t cols = 3; Matrix<rows, cols> a, b; a.randomise (distribution, generator); b.randomise (distribution, generator); std::cout << "Matrix a:\n\n" << a << '\n' << std::endl; std::cout << "Matrix b:\n\n" << b << '\n' << std::endl; std::cout << "Matrix a + b:\n\n" << a + b << '\n' << std::endl; std::cout << "Matrix a - b:\n\n" << a - b << '\n' << std::endl; Matrix<cols, rows> c; c.randomise (distribution, generator); std::cout << "Matrix c:\n\n" << c << '\n' << std::endl; std::cout << "Matrix a * c:\n\n" << a * c << '\n' << std::endl; }
#include<iostream> #include<vector> #include<random> template<const size_t R, const size_t C> class Matrix { public: using row_type = int[C]; private: // attributes int m_data[R][C]; public: // construction/assignment Matrix (); Matrix (const Matrix& source); Matrix (Matrix&& source); Matrix& operator= (const Matrix<R,C>& source); Matrix& operator= (Matrix<R,C>&& source); ~Matrix () {} public: // accessors row_type& row (const size_t index) { return m_data[index]; } const row_type& row (const size_t index) const { return m_data[index]; } row_type& operator[] (const size_t index) { return m_data[index]; } const row_type& operator[] (const size_t index) const { return m_data[index]; } size_t size() const { return R * C; } size_t rows() const { return R; } size_t cols() const { return C; } public: // operations Matrix<R,C>& operator+= (const Matrix<R,C>&); Matrix<R,C>& operator-= (const Matrix<R,C>&); }; template<const size_t R, const size_t C> Matrix<R,C>::Matrix() { for (size_t row=0; row<R; ++row) for (size_t col=0; col<C; ++col) m_data[row][col] = 0; } template<const size_t R, const size_t C> Matrix<R,C>::Matrix(const Matrix<R,C>& source) { for (size_t row=0; row<R; ++row) for (size_t col=0; col<C; ++col) m_data[row][col] = source.m_data[row][col]; } template<const size_t R, const size_t C> Matrix<R,C>::Matrix(Matrix<R,C>&& source) { for (size_t row=0; row<R; ++row) for (size_t col=0; col<C; ++col) m_data[row][col] = std::move (source.m_data[row][col]); } template<const size_t R, const size_t C> Matrix<R,C>& Matrix<R,C>::operator= (const Matrix<R,C>& source) { for (size_t row=0; row<R; ++row) for (size_t col=0; col<C; ++col) m_data[row][col] = source.m_data[row][col]; return *this; } template<const size_t R, const size_t C> Matrix<R,C>& Matrix<R,C>::operator= (Matrix<R,C>&& source) { for (size_t row=0; row<R; ++row) for (size_t col=0; col<C; ++col) m_data[row][col] = std::move (source.m_data[row][col]); return *this; } template<const size_t R, const size_t C> Matrix<R,C>& Matrix<R,C>::operator+= (const Matrix<R,C>& rhs) { for (size_t row=0; row<R; ++row) for (size_t col=0; col<C; ++col) m_data[row][col] += rhs.m_data[row][col]; return *this; } template<const size_t R, const size_t C> Matrix<R,C>& Matrix<R,C>::operator-= (const Matrix<R,C>& rhs) { for (size_t row=0; row<R; ++row) for (size_t col=0; col<C; ++col) m_data[row][col] -= rhs.m_data[row][col]; return *this; } template<const size_t R, const size_t C> Matrix<R,C> operator+ (const Matrix<R,C>& lhs, const Matrix<R,C>& rhs) { Matrix<R,C> sum (lhs); return sum += rhs; } template<const size_t R, const size_t C> Matrix<R,C> operator- (const Matrix<R,C>& lhs, const Matrix<R,C>& rhs) { Matrix<R,C> sub (lhs); return sub -= rhs; } template<const size_t R, const size_t C, const size_t R1, const size_t C1> Matrix<R,C1> operator* (const Matrix<R,C>& lhs, const Matrix<R1,C1>& rhs) { static_assert (C==R1, "Matrix dimension mismatch!"); Matrix<R,C1> mul; for (size_t x=0; x!=R; ++x) { for (size_t y=0; y!=C1; ++y) { int prod = 0; for (size_t z=0; z!=C; ++z) { prod += lhs[x][z] * rhs[z][y]; } mul[x][y] = prod; } } return mul; } template<const size_t R, const size_t C> std::ostream& operator<< (std::ostream& os, const Matrix<R,C>& m) { for (size_t row=0; row<R; ++row) { for (size_t col=0; col<C; ++col) { std::cout << m[row][col] << '\t'; } std::cout << std::endl; } return os; } int main() { std::default_random_engine generator; std::uniform_int_distribution<int> distribution (1,9); const size_t rows = 2; const size_t cols = 3; Matrix<rows, cols> a, b; for (size_t row=0; row<rows; ++row) { for (size_t col=0; col<cols; ++col) { a[row][col] = distribution (generator); b[row][col] = distribution (generator); } } std::cout << "Matrix a:\n\n" << a << '\n' << std::endl; std::cout << "Matrix b:\n\n" << b << '\n' << std::endl; std::cout << "Matrix a + b:\n\n" << a + b << '\n' << std::endl; std::cout << "Matrix a - b:\n\n" << a - b << '\n' << std::endl; Matrix<cols, rows> c; for (size_t row=0; row<rows; ++row) { for (size_t col=0; col<cols; ++col) { c[col][row] = distribution (generator); } } std::cout << "Matrix c:\n\n" << c << '\n' << std::endl; std::cout << "Matrix a * c:\n\n" << a * c << '\n' << std::endl; }