1kw=1.25kva
by this relation 75kva=60kw
p=1.732*380*I*1
I=60000/1.732*380*1
I=91Amps
CommentPower factor is irrelevant to this question. You don't need to convert the kV.A rating to kilowatts, simply divide 75 000 V.A by (1.732 x 380). The answer is 114 A.
This, of course, assumes that the question refers to a three-phase generator and that 380 V is the line voltage.
To determine the output current in amps for a 0.50 kVA transformer with a 277V input and 120V output, you can use the formula: Power (kVA) = Voltage (V) × Current (A) / 1000. For the output at 120V, the current would be calculated as follows: 0.50 kVA = 120V × Current (A) / 1000, which gives Current = (0.50 × 1000) / 120 ≈ 4.17 amps. Thus, the transformer can provide approximately 4.17 amps at the 120V output.
It depends upon the Generator system voltage. For 3 Phase, 600 Volt system, it will be 73 Amps For 3 Phase, 480 Volt system, it will be 90 Amps For 3 Phase, 208 Volt system, it will be 208 Amps
You can't determine the output voltage of a transformer by knowing kva. Transformers will be marked as to input and output voltages. Some will have multiple input and output voltages. The output voltage depends on the ratio of coil turns between input and output.
To convert amps to kilovolt-amperes (kVA), you can use the formula: kVA = (Amps × Voltage) / 1000. The voltage level is essential for the calculation, as kVA is a function of both current (in amps) and voltage (in volts). For example, at a voltage of 400V, 350 amps would be approximately 140 kVA (350 × 400 / 1000). Without the voltage value, the kVA cannot be accurately determined.
For single phase, KVA = (line to ground) * (phase current). A 75kVA 480 to 208Y/120 volt transformer is a fairly common transformer. I assume this is the type of transformer you are referring to. 75k / 120 = 625 Amps. As an FYI, the 208Y voltage is the line to line voltage, which is equal to (phase 1) - (phase 2), where the phases are separated by 120 degrees, thus (phase 1) * 1.732 For three phase, kVA = (line to line voltage) * (phase current) *(sqrt 3), 75k / 208 / 1.732 = 208 Amps.
The formula you are looking for is , A = kva x 1000/Volts.
The amps you can get from a 500 kVA transformer would depend on the voltage of the transformer's output. To calculate amperage, you can use the formula: Amps = Power (kVA) / Voltage. For example, if the output voltage is 480V, you would get approximately 1041 amps (500 kVA / 480V).
To determine the output current in amps for a 0.50 kVA transformer with a 277V input and 120V output, you can use the formula: Power (kVA) = Voltage (V) × Current (A) / 1000. For the output at 120V, the current would be calculated as follows: 0.50 kVA = 120V × Current (A) / 1000, which gives Current = (0.50 × 1000) / 120 ≈ 4.17 amps. Thus, the transformer can provide approximately 4.17 amps at the 120V output.
To calculate the output amps of a 600kVA generator at 240V, you would use the formula Amps = kVA / Volts. In this case, it would be 600kVA / 240V = 2500 amps.
It depends upon the Generator system voltage. For 3 Phase, 600 Volt system, it will be 73 Amps For 3 Phase, 480 Volt system, it will be 90 Amps For 3 Phase, 208 Volt system, it will be 208 Amps
Yes, but your input current is going to be high at 133 amps. The output of the transformer is not going to be 16 KVA, that is the rating of the transformer.
At what voltage? When you know the voltage then, to get the amps those kilovolt-amps contain, you simply divide the kilovolt-amps by the voltage.
There is not enough information provided to answer. KVA is short for "Kilo Volt Amperes". That is, thousands of Volt Amps. In order to determine how many Amperes are flowing, you must know at what voltage it is operating. Amperes = 45,000 ÷ volts Bill Slugg
20.44 kva
It depends on what the output voltage is. You only specified the input voltage, not the output voltage. The equation is 75 Kva = {some} amps times {some} kilovolts. (Minus incidental losses, of course, but you still need to know output volts.)
To convert amps to kilovolt-amperes (kVA), you need to know the voltage level. The formula is kVA = (Amps × Volts) / 1000. For example, at 240 volts, 800 amps would equal 192 kVA, while at 480 volts, it would equal 384 kVA. Thus, the kVA value will vary depending on the voltage used in the calculation.
You can't determine the output voltage of a transformer by knowing kva. Transformers will be marked as to input and output voltages. Some will have multiple input and output voltages. The output voltage depends on the ratio of coil turns between input and output.