answersLogoWhite

0

Two:

1. root and left child

2. root and right child

User Avatar

Wiki User

13y ago

Still curious? Ask our experts.

Chat with our AI personalities

LaoLao
The path is yours to walk; I am only here to hold up a mirror.
Chat with Lao
BeauBeau
You're doing better than you think!
Chat with Beau
JordanJordan
Looking for a career mentor? I've seen my fair share of shake-ups.
Chat with Jordan

Add your answer:

Earn +20 pts
Q: Number of all possible binary trees with 2 nodes is?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Engineering

Methods for storing binary trees?

Nodes, references and arrays are the methods for storing binary trees. It can also be stored in breath first order.


How many different binary trees can be made from three nodes?

As far as i Know, just one.Do you know any formula to calculate how many binary search trees are possible?--answer:(2n C n) / (n+1) = ( factorial (2n) / factorial (n) * factorial (2n - n) ) / ( n + 1 )where 'n' is number of element (integer/string)like:N Number of BST1 12 23 54 145 426 132and so on


What is the difference between extended binary tree and a binary search tree?

A strictly binary tree is one where every node other than the leaves has exactly 2 child nodes. Such trees are also known as 2-trees or full binary trees. An extended binary tree is a tree that has been transformed into a full binary tree. This transformation is achieved by inserting special "external" nodes such that every "internal" node has exactly two children.


How many binary trees are possible with 3 nodes?

42http://en.wikipedia.org/wiki/Catalan_number


How do you count all structurally different possible Binary Trees?

please tell me answer of this question. Suppose you are building an N node binary search tree with the values 1...N. how many structurally different binary trees is there that store those values? write a recursive function that, gives the number of distinct values, computes the number of structurally unique binary search trees that store those values. For example, countTrees(4) should return 14, since there are 14 structurally unique binary search trees that store 1,2,3 and 4. The base case us easy, and the recursion is short but dense. your code should not construct any actual trees; it's just a counting problem.