The focal length of a concave mirror is about equal to half of its radius of curvature.
The relation between focal length (f), radius of curvature (R), and the focal point of a spherical mirror can be described by the mirror equation: 1/f = 1/R + 1/R'. The focal length is half the radius of curvature, so f = R/2.
The Center of curvature is 2 times the focal length. By the way this is a physics question.
radius of curvature = 2Focal length
R = 2f
The curvature of the radius of a lens affects its focal length and optical power. A lens with a shorter radius of curvature will have a shorter focal length and higher optical power, while a lens with a larger radius of curvature will have a longer focal length and lower optical power.
The radius of curvature is the distance from the center of a curved surface or lens to a point on the surface, while the center of curvature is the point at the center of the sphere of which the curved surface is a part. In other words, the radius of curvature is the length of the line segment from the center to the surface, while the center of curvature is the actual point.
For a convex mirror, the focal length (f) is half the radius of curvature (R) of the mirror. This relationship arises from the mirror formula for convex mirrors: 1/f = 1/R + 1/v, where v is the image distance. When the object is at infinity, the image is formed at the focal point, and the image distance is equal to the focal length. Hence, 1/f = -1/R when solving for the focal length in terms of the radius of curvature for a convex mirror.
There is a specific formula for finding the radius of a curvature, used often when one is measuring a mirror. The formula is: Radius of curvature = R =2*focal length.
No, the focal length and radius of curvature of a lens cannot be the same. The radius of curvature is twice the focal length for a lens. This relationship is based on the geometry of the lens and the way light rays converge or diverge when passing through it.
The radius of curvature and the focal length mean the same so the radius of curvature is also 15 cm.
When the curvature radius is larger, the focal point moves closer to the lens or mirror. This is because the curvature radius affects the focal length – a larger radius results in a shorter focal length and thus a closer focal point.