A triangle whose sides are 16, 30, and 35 in length is not a right triangle, because
the square of the length of the longest side is not equal to the sum of the squares
of the lengths of the other two sides.
But if the 35 were a 34 instead, then it wouldbe.
Chat with our AI personalities
Yes because the given dimensions complies with the requirements of Pythagoras' theorem for a right angle triangle.
162+632=652 It is, in fact, a right triangle. I see no other question that you could be posing.
False because it does not comply with Pythagoras' theorem.
Yes because the dimensions given comply with Pythagoras' theorem for a right angle triangle
What is 12 in ? And what is 16 in ? ? Are they the lengths of two sides of the triangle ? Are they the length of one side and the height of the triangle ? The area of any triangle is 1/2 of the product of (length of its base) x (its height).