95.10
It is: 72-lenghth of major arc = length of minor arc
find the arc length of minor arc 95 c= 18.84
5.23
An arc can be measured either in degree or in unit length. An arc is a portion of the circumference of the circle which is determined by the size of its corresponding central angle. We create a proportion that compares the arc to the whole circle first in degree measure and then in unit length. (measure of central angle/360 degrees) = (arc length/circumference) arc length = (measure of central angle/360 degrees)(circumference) But, maybe the angle that determines the arc in your problem is not a central angle. In such a case, find the arc measure in degree, and then write the proportion to find the arc length.
a+ hhahah
95.10
Since the minor arc is 30 degrees, the major arc is 330 degrees (360 - 30). So we have: 330 degrees : arc length 10 30 degrees : arc length x 330/30 = 10/x 11/1 = 10/x x = 10/11 x = 0.9 approximately So the length of the minor arc is approximately 0.9 units.
It is: 72-lenghth of major arc = length of minor arc
find the arc length of minor arc 95 c= 18.84
5.23
If you have only the arc length then you cannot find the diameter.
The length of the arc is r*theta where r is the radius and theta the angle subtended by the arc at the centre of the circle. If you do not know theta (or cannot derive it), you cannot find the length of the arc.
length of arc/length of circumference = angle at centre/360 Rearranging the equation gives: length of arc = (angle at centre*length of circumference)/360
(arc length)/circumference=(measure of central angle)/(360 degrees) (arc length)/(2pi*4756)=(45 degrees)/(360 degrees) (arc length)/(9512pi)=45/360 (arc length)=(9512pi)/8 (arc length)=1189pi, which is approximately 3735.3536651
Find the circumference of the whole circle and then multiply that length by 95/360.
apex=14.2-14.8