You also need the measure of the central angle because arc length/2pi*r=measure of central angle/360.
An arc can be measured either in degree or in unit length. An arc is a portion of the circumference of the circle which is determined by the size of its corresponding central angle. We create a proportion that compares the arc to the whole circle first in degree measure and then in unit length. (measure of central angle/360 degrees) = (arc length/circumference) arc length = (measure of central angle/360 degrees)(circumference) But, maybe the angle that determines the arc in your problem is not a central angle. In such a case, find the arc measure in degree, and then write the proportion to find the arc length.
260.03
suck this dudck.
A central angle is measured by its intercepted arc. Let's denote the length of the intercepted arc with s, and the length of the radius r. So, s = 6 cm and r = 30 cm. When a central angle intercepts an arc whose length measure equals the length measure of the radius of the circle, this central angle has a measure 1 radian. To find the angle in our problem we use the following relationship: measure of an angle in radians = (length of the intercepted arc)/(length of the radius) measure of our angle = s/r = 6/30 = 1/5 radians. Now, we need to convert this measure angle in radians to degrees. Since pi radians = 180 degrees, then 1 radians = 180/pi degrees, so: 1/5 radians = (1/5)(180/pi) degrees = 36/pi degrees, or approximate to 11.5 degrees.
If the central angle is 70 and the radius is 8cm, how do you find out the chord lenght?
The arc length is equal to the angle times the radius. This assumes the angle is expressed in radians; if it isn't, convert it to radians first, or incorporate the conversion (usually from degrees to radians) in to your formula.
You also need the measure of the central angle because arc length/2pi*r=measure of central angle/360.
26.17
The entire circumference has a central angle of 360 degrees. The arc is a fraction of the circumference. The fraction is (central angle) divided by (360). So the arc length is: (circumference) x (central angle) / (360) .
An arc can be measured either in degree or in unit length. An arc is a portion of the circumference of the circle which is determined by the size of its corresponding central angle. We create a proportion that compares the arc to the whole circle first in degree measure and then in unit length. (measure of central angle/360 degrees) = (arc length/circumference) arc length = (measure of central angle/360 degrees)(circumference) But, maybe the angle that determines the arc in your problem is not a central angle. In such a case, find the arc measure in degree, and then write the proportion to find the arc length.
(arc length / (radius * 2 * pi)) * 360 = angle
The answer depends on what information you do have: radius, arc length, central angle etc.
If the radius is 8cm and the central angle is 70, how do yu workout the chord lenght?
Well, in degrees, the arc is congruent to its central angle. If the radius is given, however, just find the circumference of the circle (C=πd). Then, take the measure of the central angle, and divide that by 360 degrees. Multiply the circumference by the dividend, and you will get the arc length. This works because it is a proportion. Circumference:Arc length::Total degrees in triangle:Arc's central angle. Hope that helped. :D
260.03
The answer will depend on what other information is given.