answersLogoWhite

0

Still curious? Ask our experts.

Chat with our AI personalities

EzraEzra
Faith is not about having all the answers, but learning to ask the right questions.
Chat with Ezra
RossRoss
Every question is just a happy little opportunity.
Chat with Ross
TaigaTaiga
Every great hero faces trials, and you—yes, YOU—are no exception!
Chat with Taiga

Add your answer:

Earn +20 pts
Q: Find the length of the arc formed by central angle x?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Geometry

How do you find the radius when the arc length IS GIVEN?

You also need the measure of the central angle because arc length/2pi*r=measure of central angle/360.


How do you find the arc length with the angle given?

An arc can be measured either in degree or in unit length. An arc is a portion of the circumference of the circle which is determined by the size of its corresponding central angle. We create a proportion that compares the arc to the whole circle first in degree measure and then in unit length. (measure of central angle/360 degrees) = (arc length/circumference) arc length = (measure of central angle/360 degrees)(circumference) But, maybe the angle that determines the arc in your problem is not a central angle. In such a case, find the arc measure in degree, and then write the proportion to find the arc length.


Find the measure of the central angle with the arc length of 29.21 and the circumference of 40.44?

260.03


Find the measure of a central angle with circumference of 9 and arc length of 1?

suck this dudck.


A central angle of a circle of radius 30 cm intercepts an arc of 6 cm Express the central angle in radians and in degrees?

A central angle is measured by its intercepted arc. Let's denote the length of the intercepted arc with s, and the length of the radius r. So, s = 6 cm and r = 30 cm. When a central angle intercepts an arc whose length measure equals the length measure of the radius of the circle, this central angle has a measure 1 radian. To find the angle in our problem we use the following relationship: measure of an angle in radians = (length of the intercepted arc)/(length of the radius) measure of our angle = s/r = 6/30 = 1/5 radians. Now, we need to convert this measure angle in radians to degrees. Since pi radians = 180 degrees, then 1 radians = 180/pi degrees, so: 1/5 radians = (1/5)(180/pi) degrees = 36/pi degrees, or approximate to 11.5 degrees.