answersLogoWhite

0

Many things in the real world are approximately fractal or logarithmic. For example, if you examine a shore line it will be a wriggly line. Examine it at more detail and you will see a similar pattern but at a smaller scale. Even more detail and you still have the same (or similar) pattern at yet more detail. Computer-aided graphics use this property to generate landscapes: storing a small amount of "data" and replicating it at different scales is far easier than storing masses of data.

The logarithmic function also has this scale-invariant property. If you are interested, read the attached link about Benford's Law. The article does not require much mathematical knowledge - only curiosity.

User Avatar

Wiki User

10y ago

Still curious? Ask our experts.

Chat with our AI personalities

FranFran
I've made my fair share of mistakes, and if I can help you avoid a few, I'd sure like to try.
Chat with Fran
BlakeBlake
As your older brother, I've been where you are—maybe not exactly, but close enough.
Chat with Blake
CoachCoach
Success isn't just about winning—it's about vision, patience, and playing the long game.
Chat with Coach

Add your answer:

Earn +20 pts
Q: How do fractals and logarithms relate to the real world?
Write your answer...
Submit
Still have questions?
magnify glass
imp