answersLogoWhite

0

You can use the formula where s is the arc lenth, then s=r(theta) where theta is the angle in radians subtended by the arc (radian is ratio of arc length to radius) If you want to use degrees, you can either convert your central angle to degrees or use s=2Pi(r)theta/360 Once again, theta is the central angle, r is the radius, Pi is good to eat if you put an e on the end, otherwise it is about 3.14159, and s is the angle of the arc which you are looking for!

User Avatar

Wiki User

16y ago

What else can I help you with?

Related Questions

How do you calculate the the arc of a sector?

To calculate the arc length of a sector: calculate the circumference length, using (pi * diameter), then multiply by (sector angle / 360 degrees) so : (pi * diameter) * (sector angle / 360) = arc length


How do you calculate arc length in electric arc furnace?

To calculate the arc length in an electric arc furnace, you can use the formula: ( L = \theta \times r ), where ( L ) is the arc length, ( \theta ) is the angle in radians, and ( r ) is the radius of the arc. First, determine the angle that the arc subtends at the center of the furnace, then measure the effective radius from the arc's origin to the point where the arc terminates. Multiply these values to find the arc length.


How do you calculate the length of an arc of a circle?

The length of the arc is equal to the radius times the angle (angle in radians). If the angle is in any other measure, convert to radians first. (radians = degrees * pi / 180)


How can one find the arc length using radians?

To find the arc length using radians, you can use the formula: Arc Length Radius x Angle in Radians. Simply multiply the radius of the circle by the angle in radians to calculate the arc length.


How do you calculate a segment of an arc on a circle?

Determine the angle opposite the arc and divide by 360. Multiply that by the radius and double the resulting quotient. Multiply by pi. This is the length of the arc.


How do you calculate the area under an arc?

The area under the arc is the angular sweep of the arc (angle covered by the arc) divided by 360, multiply by pie times the square of the radius of the arc. If the value of pi is not given, 3.142 can be used as the value.


What is an adjacent arc?

it is an arc of an angle that is adjacent


How long is the arc ACB if the radius of the circle is 6?

To find the length of the arc ACB, we need to know the measure of the central angle (in degrees or radians) that subtends the arc. The formula for the arc length ( L ) is given by ( L = r \theta ) for radians or ( L = \frac{\pi r}{180} \times \text{degrees} ) for degrees, where ( r ) is the radius and ( \theta ) is the central angle. Assuming you provide the angle, you can substitute the radius (6) and the angle into the appropriate formula to calculate the arc length.


An angle subtended by an arc is double at the center?

an angle subtended by an arc is double at the center


What is the arc formed where a Central angle in a circle intersects the circle itself?

The arc formed where a central angle intersects the circle is called a "major arc" or "minor arc," depending on the size of the angle. The minor arc is the shorter path between the two points where the angle intersects the circle, while the major arc is the longer path. The measure of the arc in degrees is equal to the measure of the central angle that subtends it.


How do you find the length of an arc in a circle?

You can measure it with a string. If you want to calculate it based on other measurements, you can multiply the radius times the angle, assuming the angle is in radians. If the angle is in degrees, convert it to radians first.


What is the relation between the arc length and angle for a sector of a circle?

A sector is the area enclosed by two radii of a circle and their intercepted arc, and the angle that is formed by these radii, is called a central angle. A central angle is measured by its intercepted arc. It has the same number of degrees as the arc it intercepts. For example, a central angle which is a right angle intercepts a 90 degrees arc; a 30 degrees central angle intercepts a 30 degrees arc, and a central angle which is a straight angle intercepts a semicircle of 180 degrees. Whereas, an inscribed angle is an angle whose vertex is on the circle and whose sides are chords. An inscribed angle is also measured by its intercepted arc. But, it has one half of the number of degrees of the arc it intercepts. For example, an inscribed angle which is a right angle intercepts a 180 degrees arc. So, we can say that an angle inscribed in a semicircle is a right angle; a 30 degrees inscribed angle intercepts a 60 degrees arc. In the same or congruent circles, congruent inscribed angles have congruent intercepted arcs.