To calculate the surface area of a brick, you would find the surface area for each of the 6 sides, then add them together. To find the surface area of one of the faces/sides, you would multiply the length of the face in question by the width of that same face. If this is a regular brick, then the sides should match up, meaning if you do one side, then the opposite side should be the same surface area.
To find the volume, you multiply the height of the brick by the length of the brick by the width of the brick.
Volume does not, surface area does.
The volume of a cube that has a surface area of 343 is 432.2
Yes Volume: Is the amount it takes to build it. Surface Area: Is how much is on the surface.
what is the surface area and volume of each solid below
Surface area is 96cm2 Volume is 64cm3
To obtain the ratio of surface area to volume, divide the surface area by the volume.
surface area/ volume. wider range of surface area to volume is better for cells.
The surface-area-to-volume ratio may be calculated as follows: -- Find the surface area of the shape. -- Find the volume of the shape. -- Divide the surface area by the volume. The quotient is the surface-area-to-volume ratio.
Volume=area * length of that surface
surface area divided by volume
Volume does not, surface area does.
surface area/ volume. wider range of surface area to volume is better for cells.
To find the ratio of surface area to volume, we divide the surface area by the volume. Given a surface area of 588 and a volume of 1372, the ratio is ( \frac{588}{1372} ), which simplifies to approximately 0.429. Thus, the ratio of surface area to volume is about 0.429:1.
As volume increases surface area increase, but the higher the volume the less surface area in the ratio. For example. A cube 1mmx1mmx1mm has volume of 1mm3 surface area of 6mm2 which is a ration of 1:6 and a cube of 2mmx2mmx2mm has a volume of 8mm3 and surface area of 24mm2 which is a ratio of 1:3.
Think of surface area as your skin and volume as all the contents inside your body. So they relate because surface area can hold volume or volume could be inside the surface area.
The ratio of surface area to volume is calculated by dividing the surface area by the volume. In this case, the surface area is 6 m² and the volume is 1 m³. Therefore, the ratio is 6 m² / 1 m³ = 6 m⁻¹. This means the ratio of surface area to volume is 6:1.
To find the ratio of surface area to volume for the sphere, you divide the surface area by the volume. Given that the surface area is 588 and the volume is 1372, the ratio is ( \frac{588}{1372} \approx 0.428 ). Thus, the ratio of surface area to volume for the sphere is approximately 0.428.