reflect across the x-axis and then reflect again over the x-axis
To reflect a point in the x axis, multiply it's y coordinate by -1. Example: (x, y) over the x axis is now (x, -y), If you come across the y already being a negative, then make it a positive, (x, -y) = (x, y). The x stays the same, and vice versa over the y axis. Hope I helped. I am also having trouble with this, though, What if there is a zero? (5,0), it can't be (5, -0) can it?
When reflecting a point over the x-axis, you are essentially changing the sign of the y-coordinate while keeping the x-coordinate the same. So, if the original point has coordinates (x, -y), reflecting it over the x-axis would result in the new coordinates being (x, y). This transformation is a fundamental concept in geometry and can be applied to various shapes and figures to create mirror images across the x-axis.
If a function reflects along the x-axis, that indicates that it has both negative and positive solutions. For example, y = x2 reflects along the x-axis because x2 = -x2. In general, a function will reflect along the x-axis if f(x) = f(-x).
It is usually on the y-axis because you are comparing it over time. However it can sometimes be on the x-axis.
no
The bit with the negative x-axis goes to the positive x-axis.
by looking and controling it
same as if they were positive
reflect across the x-axis and then reflect again over the x-axis
To reflect a point in the x axis, multiply it's y coordinate by -1. Example: (x, y) over the x axis is now (x, -y), If you come across the y already being a negative, then make it a positive, (x, -y) = (x, y). The x stays the same, and vice versa over the y axis. Hope I helped. I am also having trouble with this, though, What if there is a zero? (5,0), it can't be (5, -0) can it?
When reflecting a point over the x-axis, you are essentially changing the sign of the y-coordinate while keeping the x-coordinate the same. So, if the original point has coordinates (x, -y), reflecting it over the x-axis would result in the new coordinates being (x, y). This transformation is a fundamental concept in geometry and can be applied to various shapes and figures to create mirror images across the x-axis.
If it is Rx=0, it means you are reflecting your set of coordinates and reflect it across the x-axis when x=0. So it pretty much is saying reflect it over the y-axi
First you go over how many spaces then you go up how many spaces
the price of goods on the x axis in terms of the good on the y axis
Reflect the chart in the line y = x.
change the y value to -y, and bring the negative over the equal sign. example. y=2x^2 reflected on the x-axis looks like y=(2x^2)/-1 which is equal to y=-(2x^2)