You dont, its just 90 degrees 3 times..
To rotate a figure 180 degrees clockwise about the origin you need to take all of the coordinates of the figure and change the sign of the x-coordinates to the opposite sign(positive to negative or negative to positive). You then do the same with the y-coordinates and plot the resulting coordinates to get your rotated figure.
I dont really know if this is right but i think to do this problem you have to take a point then rotate the paper counter clockwise around the origin then you have a new point which is called a prime. Then reflect it over the y axis on the graph.
A 180° rotation is half a rotation and it doesn't matter if it is clockwise of counter clockwise. When rotating 180° about the origin, the x-coordinate and y-coordinates change sign Thus (1, -6) → (-1, 6) after rotating 180° around the origin.
Think of any figure, with any shape, on the graph with the origin inside the shape.Now think of any point inside the shape (except the origin).Now, in your imagination, slowly and carefully turn the shape 180 degrees around the origin ...as if it were stuck to the origin with a pin, and you gave it 1/2 turn on the pin.What happened to the point you were thinking of ?If the point started out some distance to the right of the y-axis, it wound up the same distanceto the left of the y-axis.And if it started out some distance above the x-axis, it wound up the same distance below the x-axis.So ... any point that starts out at the coordinates ( x , y ) before the 1/2 turn, winds upat the coordinates ( -x , -y ) after the 1/2 turn.
You dont, its just 90 degrees 3 times..
To rotate a figure 180 degrees clockwise, you can achieve this by first reflecting the figure over the y-axis and then reflecting it over the x-axis. This double reflection effectively rotates the figure 180 degrees clockwise around the origin.
To rotate a figure 180 degrees clockwise about the origin you need to take all of the coordinates of the figure and change the sign of the x-coordinates to the opposite sign(positive to negative or negative to positive). You then do the same with the y-coordinates and plot the resulting coordinates to get your rotated figure.
To rotate a figure 90 degrees clockwise about the origin, simply swap the x and y coordinates of each point and then negate the new y-coordinate. This is equivalent to reflecting the figure over the line y = x and then over the y-axis.
No, only their positions will change.
I dont really know if this is right but i think to do this problem you have to take a point then rotate the paper counter clockwise around the origin then you have a new point which is called a prime. Then reflect it over the y axis on the graph.
Visualize a capital "N." Rotated 90 degrees counter-clockwise (a quarter turn to the left) it would look like a capital "Z."
add the
It is (-1, 6).Also, if the rotation is 180 degrees, then clockwise or anticlockwise are irrelevant.It is (-1, 6).
Rotating the graph y = x² clockwise 90° about the origin gives the graph of: y² = x → y = ±√x Removing the negative part leaves: y = √x (Note: it is convention that the radical symbol (√) means the positive square root.)
(x; y) --> (x.cos45 + y.sin45; x.sin45 - y.cos45)
A 180° rotation is half a rotation and it doesn't matter if it is clockwise of counter clockwise. When rotating 180° about the origin, the x-coordinate and y-coordinates change sign Thus (1, -6) → (-1, 6) after rotating 180° around the origin.