answersLogoWhite

0


Best Answer

The question is ambiguous since it is not clear what the question means.

If there is a mapping such that

t(0) = 1

t(1) = 1

t(2) = 2

t(3) = 6

and you require t(5), then the answer is anynumber. It is easy to find a rule based on a polynomial of order 4 such that the first four numbers are 1, 1, 2 and 6 followed by the chosen next number. There are also non-polynomial solutions. Short of reading the mind of the person who posed the question, there is no way of determining which of the infinitely many solutions is the "correct" one.

Here, fitting the 3rd degree polynomial,

t(n) = (2n^3 - 3n^2 + n + 6)/6 for n = 0, 1, 2, ...

gives t(5) = 31.

User Avatar

Wiki User

10y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: If 0 1 1 1 2 2 3 6 then 5?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Geometry

How do you work out the solutions for 3x-2y equals 1 and 3x square-2y square plus 5 equals 0?

How to solve: 3x - 2y = 1 3x2 - 2y2 + 5 = 0 Rearrange the first equation to make x or y the subject (that is x = something or y = something) and then substitute into the second equation and solve that: 3x - 2y = 1 => y = (3x - 1)/2 3x2 - 2y2 + 5 = 0 => 3x2 - 2((3x - 1)/2)2 + 5 = 0 [substitute for y] => 3x2 - 2(9x2 - 6x + 1)/4 + 5 = 0 [expand the square term] => 3x2 - (9x2 - 6x + 1)/2 + 5 = 0 [spot that 2w/4 is the same as w/2] => 6x2 - (9x2 - 6x + 1) + 10 = 0 [multiply equation by 2] => 6x2 - 9x2 + 6x - 1 + 10 = 0 [remove the brackets by multiplying by -1 as it is -1 x (..)] => -3x2 + 6x + 9 = 0 [collect together terms] => 3x2 - 6x - 9 = 0 [multiply whole equation by -1] => x2 - 2x - 3 = 0 [divide whole equation by 3] => (x - 3)(x + 1) =0 [factorize) => x = 3 or -1 [as one factor or the other must be zero] Now use first equation to find corresponding y terms: x = 3:y = (3 x (3) - 1) / 2 = 8 / 2 = 4 x = -1: y= (3 x (-1) - 1) /2 = -4 / 2 = -2 So the solution is the (x, y) pairs, or points, (3, 4) and (-1, -2). The answer can be checked using the second equation: (3, 4): 3(3)2 - 2(4)2 + 5 = 3 x 9 - 2 x 16 + 5 = 27 - 32 + 5 = 0 (-1, -2): 3(-1)2 - 2(-2)2 + 5 = 3 x 1 - 2 x 4 + 5 = 3 - 8 + 5 = 0


What is the distance from the centre of a circle to a point on the x axis that forms a tangent line when it meets the circle of x2 plus y2 -2x -6y plus 5 equals 0 at the point 3 and 4?

Point of contact: (3, 4) Circle equation: x^2 +y^2 -2x -6y+5 = 0 Completing the squares: (x-1)^2 +(y-3)^2 -1 -9 +5 = 0 So: (x-1)^2 +(y-3) = 5 Centre of circle: (1, 3) Slope of radius: (3-4)/(1-3) = 1/2 Slope of tangent: -2 Equation of tangent line: y-4 = -2(x-3) => 2x+y = 10 Tangent line meets the x axis at: (5, 0) Using formula distance from (1, 3) to (5, 0) = 5 units


How many equal angles do a pentagon have?

A Pentagon has 5 angles. It can have 0, 1, 2, 3 or all 5 equal.


What ordered pairs is not a solution to the inequality y equals -3X - 2 A. 1. 1 B. 0. -1 C. 0. 0 D. -1. 0?

If y = -3x - 2 then substituting x from each ordered pair gives :- A) (1,1) y = (-3*1) - 2 = -5 ☒ B) (0,-1) y = (-3*0) - 2 = -2 ☒ C) (0,0) y = (-3*0) - 2 = -2 ☒ D) (-1,0) y = (-3*-1) - 2 = 1 ☒ So the answer is ALL OF THEM are not solutions to the equation y = -3x - 2.......BUT, you've used the word Inequality so depending whether y > -3x - 2 or y < -3x -2 clearly affects the results.


What are the possible outscomes for a six sided die?

1-1 1-2 1-3 1-4 1-5 1-6 2-1 2-2 2-3 2-4 2-5 2-6 3-1 3-2 3-3 3-4 3-5 3-6 4-1 4-2 4-3 4-4 4-5 4-6 5-1 5-2 5-3 5-4 5-4 5-6 6-1 6-2 6-3 6-4 6-5 6-6 So there ARE 36 possible outcomes, you see. Answer BY: Magda Krysnki (grade sevener) :P

Related questions

What is the difference between -5 -1 2 5 1 -2 - 4 -4 -5 -2 -1 0 0 1?

+4 +3 +3 -4 -3 -2 0 -1 +3 +1+1 0 +1


How you to divide 8 liter in to 4 liter in 5 liter and 3 liter?

each row has the contents of 8 5 3 in that order 8 0 0 5 0 3 5 3 0 2 3 3 2 5 1 7 0 1 7 1 0 4 1 3 4 4 0 the other solution is 8 0 0 3 5 0 3 2 3 6 2 0 6 0 2 1 5 2 1 4 3 4 4 0 See related link "Dividing" for more info


What are the first 1 million digets of pi?

3. 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8 4 6 2 6 4 3 3 8 3 2 7 9 5 0 2 8 8 4 1 9 7 1 6 9 3 9 9 3 7 5 1 0 5 8 2 0 9 7 4 9 4 4 5 9 2 3 0 7 8 1 6 4 0 6 2 8 6 2 0 8 9 9 8 6 2 8 0 3 4 8 2 5 3 4 2 1 1 7 0 6 7 9 8 2 1 4 8 0 8 6 5 1 3 2 8 2 3 0 6 6 4 7 0 9 3 8 4 4 6 0 9 5 5 0 5 8 2 2 3 1 7 2 5 3 5 9 4 0 8 1 2 8 4 8 1 1 1 7 4 5 0 2 8 4 1 0 2 7 0 1 9 3 8 5 2 1 1 0 5 5 5 9 6 4 4 6 2 2 9 4 8 9 5 4 9 3 0 3 8 1 9 6 4 4 2 8 8 1 0 9 7 5 6 6 5 9 3 3 4 4 6 1 2 8 4 7 5 6 4 8 2 3 3 7 8 6 7 8 3 1 6 5 2 7 1 2 0 1 9 0 9 1 4 5 6 4 8 5 6 6 9 2 3 4 6 0 3 4 8 6 1 0 4 5 4 3 2 6 6 4 8 2 1 3 3 9 3 6 0 7 2 6 0 2 4 9 1 4 1 2 7 3 7 2 4 5 8 7 0 0 6 6 0 6 3 1 5 5 8 8 1 7 4 8 8 1 5 2 0 9 2 0 9 6 2 8 2 9 2 5 4 0 9 1 7 1 5 3 6 4 3 6 7 8 9 2 5 9 0 3 6 0 0 1 1 3 3 0 5 3 0 5 4 8 8 2 0 4 6 6 5 2 1 3 8 4 1 4 6 9 5 1 9 4 1 5 1 1 6 0 9 4 3 3 0 5 7 2 7 0 3 6 5 7 5 9 5 9 1 9 5 3 0 9 2 1 8 6 1 1 7 3 8 1 9 3 2 6 1 1 7 9 3 1 0 5 1 1 8 5 4 8 0 7 4 4 6 2 3 7 9 9 6 2 7 4 9 5 6 7 3 5 1 8 8 5 7 5 2 7 2 4 8 9 1 2 2 7 9 3 8 1 8 3 0 1 1 9 4 9 1 2 9 8 3 3 6 7 3 3 6 2 4 4 0 6 5 6 6 4 3 0 8 6 0 2 1 3 9 4 9 4 6 3 9 5 2 2 4 7 3 7 1 9 0 7 0 2 1 7 9 8 6 0 9 4 3 7 0 2 7 7 0 5 3 9 2 1 7 1 7 6 2 9 3 1 7 6 7 5 2 3 8 4 6 7 4 8 1 8 4 6 7 6 6 9 4 0 5 1 3 2 0 0 0 5 6 8 1 2 7 1 4 5 2 6 3 5 6 0 8 2 7 7 8 5 7 7 1 3 4 2 7 5 7 7 8 9 6 0 9 1 7 3 6 3 7 1 7 8 7 2 1 4 6 8 4 4 0 9 0 1 2 2 4 9 5 3 4 3 0 1 4 6 5 4 9 5 8 5 3 7 1 0 5 0 7 9 2 2 7 9 6 8 9 2 5 8 9 2 3 5 4 2 0 1 9 9 5 6 1 1 2 1 2 9 0 2 1 9 6 0 8 6 4 0 3 4 4 1 8 1 5 9 8 1 3 6 2 9 7 7 4 7 7 1 3 0 9 9 6 0 5 1 8 7 0 7 2 1 1 3 4 9 9 9 9 9 9 8 3 7 2 9 7 8 0 4 9 9 5 1 0 5 9 7 3 1 7 3 2 8 1 6 0 9 6 3 1 8 5 9 5 0 2 4 4 5 9 4 5 5 3 4 6 9 0 8 3 0 2 6 4 2 5 2 2 3 0 8 2 5 3 3 4 4 6 8 5 0 3 5 2 6 1 9 3 1 1 8 8 1 7 1 0 1 0 0 0 3 1 3 7 8 3 8 7 5 2 8 8 6 5 8 7 5 3 3 2 0 8 3 8 1 4 2 0 6 1 7 1 7 7 6 6 9 1 4 7 3 0 3 5 9 8 2 5 3 4 9 0 4 2 8 7 5 5 4 6 8 7 3 1 1 5 9 5 6 2 8 6 3 8 8 2 3 5 3 7 8 7 5 9 3 7 5 1 9 5 7 7 8 1 8 5 7 7 8 0 5 3 2 1 7 1 2 2 6 8 0 6 6 1 3 0 0 1 9 2 7 8 7 6 6 1 1 1 9 5 9 0 9 2 1 6 4 2 0 1 9 8 9


What is the mean number of 0 1 5 3 3 3 0 2 2?

(0 + 1 + 5 + 3 + 3 + 3 + 0 + 2 + 2) / 9 = 2.1 recurring (that is, 2.1111...)


Can you make a odd number with theses numbers 0 2 3 5?

No sorry you can't Actually, you can: 0 - 2 + 3 * 5 = 5 0 - 2 = -2 -2 + 3 = 1 1 * 5 = 5


Which should come next at the end of this series 1 2 0 3 -1?

1 2 0 3 -1 4 -2 5 -3 6 or 1 2 3 4 5 6 ... interlaced with 0 -1 -2 -3 -4 -5 .....


What are the notes to ride the ligntning?

Intro/outro: e-|-7-8-------5-7------------------------| B-|-7-8-------3-5------5-7------8-5------| G-|--------------------2-4---------------| D-|-----------------------------0-2------| A-|--------------------------------------| E-|--------------------------------------| Riff 1: P.M. P.M.... e-|-------------------| B-|-------------------| G-|-------------------| D-|-------------------| A-|-/8-----/8---------| E-|-/6-0-0-/6-0-0-0-0-| Riff 2: P.M e-|-------------------| B-|-------------------| G-|-------------------| D-|-----------2-----5-| A-|-4---2---4-0-4---3-| E-|-2---0---2---2-2---| Add 1: e-|--------| B-|--------| G-|--------| D-|-4------| A-|-4------| E-|-2------| Add 2: e-|-------| B-|-------| G-|-------| D-|-5---4-| A-|-3---2-| E-|-------| Riff 3: P.M P.M....| e-|-------------------| B-|-------------------| G-|-------------------| D-|-/5-----/5---------| A-|-/3-----/3---------| E-|----2-2----2-2-2-2-| Chorus: P.M...........| P.M.........| e-|-----------------------------------------------------------| B-|-----------------------------------------------------------| G-|-----------------------------------------------------------| D-|-6---5-4---6-----------------6---5-4---6-------------------| A-|-4---3-2---4-0-0-0-0-0-0-0-0-4---3-2---4-0-0-0-0-0-0-0-2br-| E-|-----------------------------------------------------------| Riff 4: P.M |.| |.....| |-------| e-|-------------------------------------------------| B-|-------------------------------------------------| G-|-------------------------------------------------| D-|-9\8\7---5-----4---------------------------------| A-|-7\6\5---3-----2-5-----------5-2-----------5-2---| E-|-------0---0-0---3---0-0-0-0-3-0-0-0-0-0-0-3-0---| Riff 5: P.M...| |.........| |.........| |.........| e-|----------------------------------------------------------- B-|----------------------------------------------------------- G-|----------------------------------------------------------- D-|---------5---------------5---------------4---------------4- A-|-4-4-4-4-3---3-3-3-3-3-3-3---3-3-3-3-3-3-2---2-2-2-2-2-2-2- E-|----------------------------------------------------------- P.M.......| |.........| |.........| |.........| --------------------------------------------------------------- --------------------------------------------------------------- --------------------------------------------------------------- -------------3---------------3---------------2---------------2- -2-2-2-2-2-2-1---1-1-1-1-1-1-1---0-0-0-0-0-0-0---0-0-0-0-0-0-0- --------------------------------------------------------------- P.M....| |.........| |..........| |..........| -------------------------------------------------------------| -------------------------------------------------------------| -------------------------------------------------------------| -------------------------------------------------------------| ---------3---------------3---------------5---------------8---| -1-1-1-1-1---1-1-1-1-1-1-1---1-1-3-3-3-3-3---3-3-6-6-6-6-6---| Riff 6: P.M. e-|----------------| B-|----------------| G-|---------5------| D-|-9\8\7---5------| A-|-7\6\5---3------| E-|-------0--------| Add 3: e-|--------| B-|--------| G-|-4------| D-|-4------| A-|-2------| E-|--------| Riff 7: P.M |...| e-|----------------------------------| B-|----------------------------------| G-|-------------5--------------------| D-|-2-----------5--------------------| A-|-2-----------3---3-----5/---7-7---| E-|-0-------0-0-----3-3-3-3/---5-5---| Riff 8: P.M....| |......| |.| |.| |.| e-|----------------------------------------------------------| B-|----------------------------------------------------------| G-|----------------------------------------------------------| D-|-------------7--------------------------------------------| A-|-4-----------5-----------7/---7---7-------7-------7-------| E-|-2---2-2-2-2-----5-5-5-5-5/---5---5---5-5-5---5-5-5---5-5-| Riff 9: e-|----------------------------------------| B-|----------------------------------------| G-|----------------------------------------| D-|----------------------------------------| A-|-7---7---7------5---5------3------------| E-|-5---5---5------3---3------1------------| Riff 10: P.M...................................| e-|-------------------------------------------------------| B-|-------------------------------------------------------| G-|-------------------------------------------------------| D-|-------------------------------------------4---5---4---| A-|---------4-5-----------4-5-----------4-5---2---3---2---| E-|-0-0-0-0-2-3---0-0-0-0-2-3---0-0-0-0-2-3---------------| Riff 11: P.M....| |.........| |.........| |.........| e-|------------------------------------------------------------ B-|------------------------------------------------------------ G-|------------------------------------------------------------ D-|---------5---------------5---------------4---------------4-- A-|-3-3-3-3-3---3-3-3-3-3-3-3---3-3-2-2-2-2-2---2-2-2-2-2-2-2-- E-|------------------------------------------------------------ P.M........| |..........| |.........| |..| ----------------------------------------------------- ----------------------------------------------------- ----------------------------------------------------- -------------3---------------3---------------2------- -2-2-1-1-1-1-1---1-1-1-1-1-1-1---1-1-0-0-0-0-0---0-0- ----------------------------------------------------- P.M.....| |..| -----------------| -----------------| -----------------| ---------2-------| -0-0-0-0-0---0-0-| -----------------| Riff 12: P.M....| P.M........| P.M........| P.M.......| e-|-----------------------------------------------------------| B-|-----------------------------------------------------------| G-|-----------------------------------------------------------| D-|---------10--------------10--------------7---------------8-| A-|-8-8-8-8-8---8-8-8-8-8-8-8---8-8-5-5-5-5-5---5-5-6-6-6-6-6-| E-|-----------------------------------------------------------| Add 4: e-|-------------| B-|-------------| G-|-------------| D-|-5---4---3---| A-|-3---2---1---| E-|-------------| Riff 13: e-|------------------------| B-|------------------------| G-|------------------------| D-|-----------2-----5------| A-|-4---2---4-0-4---3------| E-|-2---0---2---2----------| Riff 14: e-|---------------------| B-|---------------------| G-|---------------------| D-|-----------2---------| A-|-4---2---4-0-4---2---| E-|-2---0---2---2---0---| Riff 15: P.M. |.| |.| |.| e-|-------------------------------------------------------| B-|-------------------------------------------------------| G-|-------------------------------------------------------| D-|-----------2-----5-------5-------5-------5-------5\4---| A-|-4---2---4-0-4---3---3-3-3---3-3-3---3-3-3---3-3-3\2---| E-|-2---0---2---2-----------------------------------------| Add 5: P.M.......... .| e-|-----------------| B-|-----------------| G-|-----------------| D-|-----------------| A-|-----------------| E-|-0-0-0-0-0-0-0-0-| That was all the riffs, lads! This will show you when to play them: Intro x4 Riff 1 x12 Riff 2 x4 Add 1 x1 Add 2 x1 Riff 1 x4 Add 2 x1 Riff 1 x4 Add 2 x1 Riff 3 x4 Chorus x1 Riff 3 x2 Chorus x1 Riff 2 x4 Riff 1 x4 Add 2 x1 Riff 1 x4 Add 2 x1 Riff 3 x4 Chorus x1 Riff 3 x2 Chorus x1 Riff 4 x4 Riff 5 x1 Riff 4 x3 Riff 6 x1 Add 3 x1 Riff 7 x4 Riff 8 x4 Riff 9 x1 Riff 10 x4 Riff 11 x2 Riff 12 x1 Riff 11 x1 Riff 12 x1 Riff 4 x4 Riff 5 x1 Riff 4 x3 Riff 6 x1 Riff 1 x12 Add 4 x1 Add 1 x1 Riff 1 x4 Add 1 x1 Riff 1 x4 Add1 x1 Riff 3 x4 Chorus x1 Riff 3 x2 Chorus x1 Riff 2 x4 Riff 13 x1 Riff 14 x1 Riff 13 x1 Riff 14 x1 Riff 15 x1 Riff 14 x1 Add 5 x1 Riff 15 x1 Riff 14 x1 Add 5 x1 Outro x1


What are the 4 digit combinations of the numbers 0 through 9?

There are 10!/(4!(10-4)!) = 210 such combinations assuming no repeats are allowed: {0, 1, 2, 3}, {0, 1, 2, 4}, {0, 1, 2, 5}, {0, 1, 2, 6}, {0, 1, 2, 7}, {0, 1, 2, 8}, {0, 1, 2, 9}, {0, 1, 3, 4}, {0, 1, 3, 5}, {0, 1, 3, 6}, {0, 1, 3, 7}, {0, 1, 3, 8}, {0, 1, 3, 9}, {0, 1, 4, 5}, {0, 1, 4, 6}, {0, 1, 4, 7}, {0, 1, 4, 8}, {0, 1, 4, 9}, {0, 1, 5, 6}, {0, 1, 5, 7}, {0, 1, 5, 8}, {0, 1, 5, 9}, {0, 1, 6, 7}, {0, 1, 6, 8}, {0, 1, 6, 9}, {0, 1, 7, 8}, {0, 1, 7, 9}, {0, 1, 8, 9}, {0, 2, 3, 4}, {0, 2, 3, 5}, {0, 2, 3, 6}, {0, 2, 3, 7}, {0, 2, 3, 8}, {0, 2, 3, 9}, {0, 2, 4, 5}, {0, 2, 4, 6}, {0, 2, 4, 7}, {0, 2, 4, 8}, {0, 2, 4, 9}, {0, 2, 5, 6}, {0, 2, 5, 7}, {0, 2, 5, 8}, {0, 2, 5, 9}, {0, 2, 6, 7}, {0, 2, 6, 8}, {0, 2, 6, 9}, {0, 2, 7, 8}, {0, 2, 7, 9}, {0, 2, 8, 9}, {0, 3, 4, 5}, {0, 3, 4, 6}, {0, 3, 4, 7}, {0, 3, 4, 8}, {0, 3, 4, 9}, {0, 3, 5, 6}, {0, 3, 5, 7}, {0, 3, 5, 8}, {0, 3, 5, 9}, {0, 3, 6, 7}, {0, 3, 6, 8}, {0, 3, 6, 9}, {0, 3, 7, 8}, {0, 3, 7, 9}, {0, 3, 8, 9}, {0, 4, 5, 6}, {0, 4, 5, 7}, {0, 4, 5, 8}, {0, 4, 5, 9}, {0, 4, 6, 7}, {0, 4, 6, 8}, {0, 4, 6, 9}, {0, 4, 7, 8}, {0, 4, 7, 9}, {0, 4, 8, 9}, {0, 5, 6, 7}, {0, 5, 6, 8}, {0, 5, 6, 9}, {0, 5, 7, 8}, {0, 5, 7, 9}, {0, 5, 8, 9}, {0, 6, 7, 8}, {0, 6, 7, 9}, {0, 6, 8, 9}, {0, 7, 8, 9}, {1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 3, 6}, {1, 2, 3, 7}, {1, 2, 3, 8}, {1, 2, 3, 9}, {1, 2, 4, 5}, {1, 2, 4, 6}, {1, 2, 4, 7}, {1, 2, 4, 8}, {1, 2, 4, 9}, {1, 2, 5, 6}, {1, 2, 5, 7}, {1, 2, 5, 8}, {1, 2, 5, 9}, {1,2, 6, 7}, {1, 2, 6, 8}, {1, 2, 6, 9}, {1, 2, 7, 8}, {1, 2, 7, 9}, {1, 2, 8, 9}, {1, 3, 4, 5}, {1, 3, 4, 6}, {1, 3, 4, 7}, {1, 3, 4, 8}, {1, 3, 4, 9}, {1, 3, 5, 6}, {1, 3, 5, 7}, {1, 3, 5, 8}, {1, 3, 5, 9}, {1, 3, 6, 7}, {1, 3, 6, 8}, {1, 3, 6, 9}, {1, 3, 7, 8}, {1, 3, 7, 9}, {1, 3, 8, 9}, {1, 4, 5, 6}, {1, 4, 5, 7}, {1, 4, 5, 8}, {1, 4, 5, 9}, {1, 4, 6, 7}, {1, 4, 6, 8}, {1, 4, 6, 9}, {1, 4, 7, 8}, {1, 4, 7, 9}, {1, 4, 8, 9}, {1, 5, 6, 7}, {1, 5, 6, 8}, {1, 5, 6, 9}, {1, 5, 7, 8}, {1, 5, 7, 9}, {1, 5, 8, 9}, {1, 6, 7, 8}, {1, 6, 7, 9}, {1, 6, 8, 9}, {1, 7, 8, 9}, {2, 3, 4, 5}, {2, 3, 4, 6}, {2, 3, 4, 7}, {2, 3, 4, 8}, {2, 3, 4, 9}, {2, 3, 5, 6}, {2, 3, 5, 7}, {2, 3, 5, 8}, {2, 3, 5, 9}, {2, 3, 6, 7}, {2, 3, 6, 8}, {2, 3, 6, 9}, {2, 3, 7, 8}, {2, 3, 7, 9}, {2, 3, 8, 9}, {2, 4, 5, 6}, {2, 4, 5, 7}, {2, 4, 5, 8}, {2, 4, 5, 9}, {2, 4, 6, 7}, {2, 4, 6, 8}, {2, 4, 6, 9}, {2, 4, 7, 8}, {2, 4, 7, 9}, {2, 4, 8, 9}, {2, 5, 6, 7}, {2, 5, 6, 8}, {2, 5, 6, 9}, {2, 5, 7, 8}, {2, 5, 7, 9}, {2, 5, 8, 9}, {2, 6, 7, 8}, {2, 6, 7, 9}, {2, 6, 8, 9}, {2, 7, 8, 9}, {3, 4, 5, 6}, {3, 4, 5, 7}, {3, 4, 5, 8}, {3, 4, 5, 9}, {3, 4, 6, 7}, {3, 4, 6, 8}, {3, 4, 6, 9}, {3, 4, 7, 8}, {3, 4, 7, 9}, {3, 4, 8, 9}, {3, 5, 6, 7}, {3, 5, 6, 8}, {3, 5, 6, 9}, {3, 5, 7, 8}, {3, 5, 7, 9}, {3, 5, 8, 9}, {3, 6, 7, 8}, {3, 6, 7, 9}, {3, 6, 8, 9}, {3, 7, 8, 9}, {4, 5, 6, 7}, {4, 5, 6, 8}, {4, 5, 6, 9}, {4, 5, 7, 8}, {4, 5, 7, 9}, {4, 5, 8, 9}, {4, 6, 7, 8}, {4, 6, 7, 9}, {4, 6, 8, 9}, {4, 7, 8, 9}, {5, 6, 7, 8}, {5, 6, 7, 9}, {5, 6, 8, 9}, {5, 7, 8, 9}, {6, 7, 8, 9} If repeats are allowed, the number increases to 715 combinations - I'll leave it as an exercise for the reader to list the extra 505 combinations.


What are the integers between -5 and 3?

8


How can you generate the Fibonacci sequences?

1. Start with any two numbers . ( Use 0 and 1 to get the standard sequence) 2. 0 1 Rule: Add each pair of numbers to get the next term 0 1 1 ( add 0 + 1 to get 1) 0 1 1 2 ( add 1 + 1 to get 2) 0 1 1 2 3 (1+2 = 3) 0 1 1 2 3 5 (2 + 3 = 5) 0 1 1 2 3 5 8 and so on forever.


First six triangula numbers?

1 (0+1) 3 (0+1+2) 6 (0+1+2+3) 10 (0+1+2+3+4) 15 (0+1+2+3+4+5) 21 (0+1+2+3+4+5+6) Notice these are the numbers you can arrange into equalateral triangles.


What is the slope passing through 1 5 and 0 2?

slope = change_in_y/change_in_x = (2 - 5)/(0 - 1) = -3/-1 = 3