It is isosceles.
It is isosceles.
Isosceles
BAD = BCD is the answer i just did it
m^2=(2b^2+2c^2-a^2)/4 where m is the median of triangle ABC.
It is a median.
It is isosceles.
Isosceles
BAD = BCD is the answer i just did it
One possible conjecture is that it has one median which coincides with the corresponding altitude.
Let the triangle be ABC and suppose the median AD is also an altitude.AD is a median, therefore BD = CDAD is an altitude, therefore angle ADB = angle ADC = 90 degreesThen, in triangles ABD and ACD,AD is common,angle ADB = angle ADCand BD = CDTherefore the two triangles are congruent (SAS).And therefore AB = AC, that is, the triangle is isosceles.
m^2=(2b^2+2c^2-a^2)/4 where m is the median of triangle ABC.
4+4
Let the triangle be ABC and its medians by AX and BY and CZ. Therefore, since AC=AB, and OP=BD. Therefore, By Triangle Equiangular Property, Triangle ABC simliar to Triangle XYZ Therefore, Three times the sum of the squares of sides of triangle equal to 4 times of its median.:) Hope it helped.
h=c sin a
In the diagram, ABC is an isoscels triangle with the congruent sides and , and is the median drawn to the base . We know that ∠A ≅ ∠C, because the base angles of an isosceles triangle are congruent; we also know that ≅ , by definition of an isosceles triangle. A median of a triangle is a line segment drawn from a vertex to the midpoint of the opposite side. That means ≅ . This proves that ΔABD ≅ ΔCBD. Since corresponding parts of congruent triangles are congruent, that means ∠ABD≅ ∠CBD. Since the median is the common side of these adjacent angles, in fact bisects the vertex angle of the isosceles triangle.
ABC angle is an angle,not a triangle!
Two. However, you can actually do it with just one. Consider the median AD of triangle ABC. Then the point G, 2/3 of the way from A to D, is the centroid. This process (2/3 of the way from the vertex to the opposite side) can be applied to any median.