If you are referring to Pythagoras' theorem for right angle triangles then the theorem states that for any right angle triangle the square of its hypotenuse is equal to the sum of its squared sides.
Chat with our AI personalities
Designate the length by L. From the Pythagorean theorem, the length of the diagonal of a square, which divides the square into two right triangles, each with sides L (and the diagonal as hypotenuse to each right triangle), is square root of 2L2 = 4 (from the problem statement). Squaring both sides separately yields 2L2 = 16 or L = square root of 8 = 2 (square root of 2).
L
Let us consider a line l such that it is the perpendicular bisector of line segment AB and the line intersects at point C.Let us take any point on line l(say, D). Join A to D and B to D.Now we have two triangles ACD and BCD.Now, in triangles ACD & BCD, we haveCD = CD (Common side)�ACD = �BCD (Right angle)AC = BC (Since l bisects AB)According to Side-Angle-Side criteria: Both triangles are congruent.Since both triangles are congruent, therefore AD = BD.So, l is the set of all points equidistant from A & B.Hence proved.
pyramid
The altitude/height of an equilateral triangle can be calculated by taking the perpendicular bisector of any side. This line will bisect its opposite angle forming two congruent right angled triangles. The side length of the original equilateral triangle is the hypotenuse and the short leg of right angled triangle is half the hypotenuse. By Pythagoras' Theorem : 42 = 22 + L2.........where L is the length of the altitude. L2 = 42 - 22 = 16 - 4 = 12 L = √12 = 2√3 = 3.464 (3dp)