Euclid's parallel postulate.
... given line. This is one version of Euclid's fifth postulate, also known as the Parallel Postulate. It is quite possible to construct consistent systems of geometry where this postulate is negated - either many parallel lines or none.
Answer The two commonly mentioned non-Euclidean geometries are hyperbolic geometry and elliptic geometry. If one takes "non-Euclidean geometry" to mean a geometry satisfying all of Euclid's postulates but the parallel postulate, these are the two possible geometries.
Probably the best known equivalent of Euclid's parallel postulate, contingent on his other postulates, is Playfair's axiom, named after the Scottish mathematician John Playfair, which states:In a plane, given a line and a point not on it, at most one line parallel to the given line can be drawn through the point.
Yes they are. It is delineated in something called the parallel postulate, and the axiom is also called Euclid's fifth postulate. This is boilerplate Euclidean geometry, and a link can be found below if you'd like to review the particulars.
Euclid's parallel postulate.
It is proven by a theorem (which relies on Euclid's parallel postulate).
It is a consequence of Euclid's parallel postulate. In fact, in some versions, the statement that "a plane triangle has interior angles that sum to 180 degrees" replaces the parallel postulate.
This is Euclid's fifth postulate, also known as the Parallel Postulate. It is quite possible to construct consistent systems of geometry where this postulate is negated - either many parallel lines or none.
That is only true of triangles and is a consequence of the parallel postulate. In fact it is an alternative way of stating Euclid's parallel postulate.
Yes by one definition of interior angles - it does !
... given line. This is one version of Euclid's fifth postulate, also known as the Parallel Postulate. It is quite possible to construct consistent systems of geometry where this postulate is negated - either many parallel lines or none.
Answer The two commonly mentioned non-Euclidean geometries are hyperbolic geometry and elliptic geometry. If one takes "non-Euclidean geometry" to mean a geometry satisfying all of Euclid's postulates but the parallel postulate, these are the two possible geometries.
Another name for the Playfair Axiom is the Euclid's Parallel Postulate. It states that given a line and a point not on that line, there is exactly one line parallel to the given line passing through the given point.
It is a consequence of Euclid's parallel postulate.
Probably the best known equivalent of Euclid's parallel postulate, contingent on his other postulates, is Playfair's axiom, named after the Scottish mathematician John Playfair, which states:In a plane, given a line and a point not on it, at most one line parallel to the given line can be drawn through the point.
Yes they are. It is delineated in something called the parallel postulate, and the axiom is also called Euclid's fifth postulate. This is boilerplate Euclidean geometry, and a link can be found below if you'd like to review the particulars.