9
6
Given a straight line (a directrix) and a point (the focus) which is not on that line, a parabola is locus of all points whose distance form the directrix is the same as its distance from the focus.
true
One definition of a parabola is the set of points that are equidistant from a given line called the directrix and a given point called the focus. So, no. The distances are not different, they are the same. The distance between the directrix and a given point on the parabola will always be the same as the distance between that same point on the parabola and the focus. Any point where those two distances are equal would be on the parabola somewhere and all the points where those two distances are different would not be on the parabola. Note that the distance from a point to the directrix is definied as the perpendicular distance (also known as the minimum distance).
It is the apex of the parabola.
6
"From the geometric point of view, the given point is the focus of the parabola and the given line is its directrix. It can be shown that the line of symmetry of the parabola is the line perpendicular to the directrix through the focus. The vertex of the parabola is the point of the parabola that is closest to both the focus and directrix."-http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgorithms/parabola.htm"A line perpendicular to the axis of symmetry used in the definition of a parabola. A parabola is defined as follows: For a given point, called the focus, and a given line not through the focus, called the directrix, a parabola is the locus, or set of points, such that the distance to the focus equals the distance to the directrix."-http://www.mathwords.com/d/directrix_parabola.htm
Given a straight line (a directrix) and a point (the focus) which is not on that line, a parabola is locus of all points whose distance form the directrix is the same as its distance from the focus.
10
answer is 6
It is 9.
true
12 from lil J smokey
One definition of a parabola is the set of points that are equidistant from a given line called the directrix and a given point called the focus. So, no. The distances are not different, they are the same. The distance between the directrix and a given point on the parabola will always be the same as the distance between that same point on the parabola and the focus. Any point where those two distances are equal would be on the parabola somewhere and all the points where those two distances are different would not be on the parabola. Note that the distance from a point to the directrix is definied as the perpendicular distance (also known as the minimum distance).
It is the apex of the parabola.
A parabola has a single focus point. There is a line running perpendicular to the axis of symmetry of the parabola called the directrix. A line running from the focus to a point on the parabola is going to have the same distance as from the point on the parabola to the closest point of the directrix. In theory you could look at a parabola as being an ellipse with one focus at infinity, but that really doesn't help any. ■
A parabola.