1. There are two right triangles.
2. They have congruent hypotenuses.
3. They have one pair of congruent legs.
Pythagorean theorem
leg
The four congruence theorem for right triangles are:- LL Congruence Theorem --> If the two legs of a right triangle is congruent to the corresponding two legs of another right triangle, then the triangles are congruent.- LA Congruence Theorem --> If a leg and an acute angle of a right triangles is congruent to the corresponding leg and acute angle of another right triangle, then the triangles are congruent.- HA Congruence Theorem --> If the hypotenuse and an acute angle of a right triangle is congruent to the corresponding hypotenuse and acute angle of another triangle, then the triangles are congruent.- HL Congruence Theorem --> If the hypotenuse and a leg of a right triangle is congruent to the corresponding hypotenuse and leg of another right triangle, then the triangles are congruent.
hypotenuses
LEGS
The SAS theorem is used to prove that two triangles are congruent. If the triangles have a side-angle-side that are congruent (it must be in that order), then the two triangles can be proved congruent. Using this theorem can in the future help prove corresponding parts are congruent among other things.
The hypotenuse leg theorem states that any two right triangles that have a congruent hypotenuse and a corresponding, congruent leg arecongruent triangles.
Pythagorean theorem
leg
That's not a postulate. It's a theorem. And you have stated it.
law of congruency
It is a congruence theorem for triangles. It states that if you have two triangles in which two sides of one are congruent to two sides of the other, and the angles included by the sides are equal, then the triangles are congruent.
In gemortry, CPCTC is the abbreviation of a therom involving congrugent triangles. CPCTC stands for Corresponding Parts of Congruent Triangles are Congruent. CPCTC states that if two or more triangles are proven congruent by: ASA, AAS, SSS, HL, or SAS, then all of their corresponding parts are congruent as well.Ifthen the following conditions are true:A related theorem is CPCFC, in which triangles is replaced with figures so that the theorem applies to any polygon or polyhedrogen.
The two legs must be corresponding sides.
hypotenuses
The four congruence theorem for right triangles are:- LL Congruence Theorem --> If the two legs of a right triangle is congruent to the corresponding two legs of another right triangle, then the triangles are congruent.- LA Congruence Theorem --> If a leg and an acute angle of a right triangles is congruent to the corresponding leg and acute angle of another right triangle, then the triangles are congruent.- HA Congruence Theorem --> If the hypotenuse and an acute angle of a right triangle is congruent to the corresponding hypotenuse and acute angle of another triangle, then the triangles are congruent.- HL Congruence Theorem --> If the hypotenuse and a leg of a right triangle is congruent to the corresponding hypotenuse and leg of another right triangle, then the triangles are congruent.
The HA and HL theorems for right triangles or the Pythagorean theorem might be of use.