cylinder??nope
A cone has one vertex and one edge.
It's Edge. That is incorrect. The corners formed by two adjacent lines are the vertex.
It's a cone
Faces-2 (1 flat face and 1 curved face), 1 curved edge, and 1 vertex.
How about a sphere as an example that fits the given description
its called a face an edge is called en edge a point is called a vertex
one face one vertex and two circle edges * * * * * What kind of cone is that? It has 1 edge, 2 faces (one curved and one plane), and 1 vertex.
cylinder??nope
If you mean a cone then it has a flat base face and a circular face with one edge and one vertex
A cone has one vertex and one edge.
import java.util.List; import java.util.ArrayList; import java.util.Collections; class Vertex implements Comparable<Vertex> { public final String name; public Edge[] adjacencies; public double minDistance = Double.POSITIVE_INFINITY; public Vertex previous; public Vertex(String argName) { name = argName; } public String toString() { return name; } public int compareTo(Vertex other) { return Double.compare(minDistance, other.minDistance); } } class Edge { public final Vertex target; public final double weight; public Edge(Vertex argTarget, double argWeight) { target = argTarget; weight = argWeight; } } public class Dijkstra { public static void computePaths(Vertex source) { source.minDistance = 0.; PriorityQueue<Vertex> vertexQueue = new PriorityQueue<Vertex>(); vertexQueue.add(source); while (!vertexQueue.isEmpty()) { Vertex u = vertexQueue.poll(); // Visit each edge exiting u for (Edge e : u.adjacencies) { Vertex v = e.target; double weight = e.weight; double distanceThroughU = u.minDistance + weight; if (distanceThroughU < v.minDistance) { vertexQueue.remove(v); v.minDistance = distanceThroughU ; v.previous = u; vertexQueue.add(v); } } } } public static List<Vertex> getShortestPathTo(Vertex target) { List<Vertex> path = new ArrayList<Vertex>(); for (Vertex vertex = target; vertex != null; vertex = vertex.previous) path.add(vertex); Collections.reverse(path); return path; } public static void main(String[] args) { Vertex v0 = new Vertex("Harrisburg"); Vertex v1 = new Vertex("Baltimore"); Vertex v2 = new Vertex("Washington"); Vertex v3 = new Vertex("Philadelphia"); Vertex v4 = new Vertex("Binghamton"); Vertex v5 = new Vertex("Allentown"); Vertex v6 = new Vertex("New York"); v0.adjacencies = new Edge[]{ new Edge(v1, 79.83), new Edge(v5, 81.15) }; v1.adjacencies = new Edge[]{ new Edge(v0, 79.75), new Edge(v2, 39.42), new Edge(v3, 103.00) }; v2.adjacencies = new Edge[]{ new Edge(v1, 38.65) }; v3.adjacencies = new Edge[]{ new Edge(v1, 102.53), new Edge(v5, 61.44), new Edge(v6, 96.79) }; v4.adjacencies = new Edge[]{ new Edge(v5, 133.04) }; v5.adjacencies = new Edge[]{ new Edge(v0, 81.77), new Edge(v3, 62.05), new Edge(v4, 134.47), new Edge(v6, 91.63) }; v6.adjacencies = new Edge[]{ new Edge(v3, 97.24), new Edge(v5, 87.94) }; Vertex[] vertices = { v0, v1, v2, v3, v4, v5, v6 }; computePaths(v0); for (Vertex v : vertices) { System.out.println("Distance to " + v + ": " + v.minDistance); List<Vertex> path = getShortestPathTo(v); System.out.println("Path: " + path); } } }
cone
Not sure, but my best guess would be a circle. Sorry for the inconvenience.
Don't know. It cannot be a cone since that has two faces: one curved (curvered?) face and one flat (circular) face. Alternatively, an infinite cone has only one curved face but then it has no edge.
A cycle is a closed path such that the end vertex of the final edge is the start vertex of the first edge.
vertex vertex