The order of symmetry of an object is the number of part-rotations that bring the object to a position that is identical to its starting position. Note that since all objects must return to their starting position if rotated through one whole circle (360 degrees), rotational symmetry of 1 is not counted.
If it is a regular octagon then it has rotational symmetry to the order of 8
no shape does! * * * * * Not true. A parallelogram has rotational symmetry of order 2, but no lines of symmetry.
Yes, an equilateral triangle has rotational symmetry of order 3.
A general parallelogram has rotational symmetry of order two.
When a shape is rotated about its centre, if it comes to rest in a position and looks exactly like the original, then it has rotational symmetry. A shape like an equilateral triangle would therefore have an order of rotational symmetry of 3. The general rule for a regular polygon (shapes such as pentagons, heptagons, octagons etc. is, that the number of sides is the same as the number of lines of symmetry, which is also the same as the rotational symmetry order). This means that a regular hexagon has 6 sides, 6 lines of symmetry and an order of rotational symmetry of 6. Following from this, then a square, which is a regular polygon, has 4 sides, 4 lines of symmetry and an order of rotational symmetry of 4. If a shape has rotational symmetry, it must have either line symmetry or point symmetry or both. For example, a five pointed star has 5 lines of symmetry and rotational symmetry of order 5, but does not have point symmetry. A parallelogram has no line of symmetry, but has rotational symmetry of order 2 and also point symmetry. Only a shape which has line symmetry or point symmetry can have rotational symmetry. When there is point symmetry and also rotational symmetry, the order of the latter is even. For example, the letter 'S' has rotational symmetry of order 2, the regular hexagon of order 6. On this basis, we would suggest that the letter 'F' does not have a rotational symmetry order as it does not have either line symmetry or point symmetry. It doesn't have a centre around which you could rotate it. Sounds weird, but given the definitions, we think this is the case.
if you mean rotational symmetry then yes, rotational symmetry of order 4
A line has rotational symmetry of order 2.
Nothing has 1 order of rotational symmetry because in rotational symmetry 1 is none.
It has rotational symmetry to the order of 2
If it is a regular octagon then it has rotational symmetry to the order of 8
It does have rotational symmetry of order three.
no shape does! * * * * * Not true. A parallelogram has rotational symmetry of order 2, but no lines of symmetry.
A parallelogram has rotational symmetry of order 2.
parallelogram * * * * * A parallelogram does have rotational symmetry (order 2).
Rotational symmetry of order 1.
It has 1 order of rotational symmetry.
none shapes have 1 rotational symmetry because in rotational symmetry one is none