Reflexive,Symmetric, and Transitive
No. Do your own homework. http://docs.google.com/gview?a=v&q=cache:ZZmsH0jKHH8J:www.cs.utk.edu/~horton/hw1.pdf+For+each+part+give+a+relation+that+satisfies+the+condition+a+Reflexive+and+symmetric+but+not+transitive+b+Reflexive+and+transitive+but+not+symmetric+c+Symmetric+and+transitive+but+not+reflexive%3F&hl=en&gl=us&sig=AFQjCNHGyc1EDhfqj_mu-RV9yTYZZfXl6A
When in a triangle, for angle A, B, C; As the symmetric property of congruence , when ∠A ≌ ∠B then ∠B ≌ ∠A and when ∠A ≌ ∠C then ∠C ≌ ∠A and when ∠C ≌ ∠B then ∠B ≌ ∠C This is the definition of symmetric property of congruence.
Symmetric Property of Congruence
The Symmetric Property of Congruence: If angle A is congruent to angle B, then angle B is congruent to angle A. If X is congruent to Y then Y is congruent to X.
Reflexive,Symmetric, and Transitive
No. Do your own homework. http://docs.google.com/gview?a=v&q=cache:ZZmsH0jKHH8J:www.cs.utk.edu/~horton/hw1.pdf+For+each+part+give+a+relation+that+satisfies+the+condition+a+Reflexive+and+symmetric+but+not+transitive+b+Reflexive+and+transitive+but+not+symmetric+c+Symmetric+and+transitive+but+not+reflexive%3F&hl=en&gl=us&sig=AFQjCNHGyc1EDhfqj_mu-RV9yTYZZfXl6A
A=r mod z R= a relation which is reflexive symmetric but not transitive
When in a triangle, for angle A, B, C; As the symmetric property of congruence , when ∠A ≌ ∠B then ∠B ≌ ∠A and when ∠A ≌ ∠C then ∠C ≌ ∠A and when ∠C ≌ ∠B then ∠B ≌ ∠C This is the definition of symmetric property of congruence.
8 addition subtraction multiplication division reflexive symmetric transitive substitution
Symmetric Property of Congruence
for any real numbers x, y and z: REFLEXIVE PROPERTY; x=x SYMMETRIC PROPERTY; if x=y, then y=x TRANSITIVE PROPERTY; if x=y and y=z then x=z
Equality is a relationship that is REFLEXIVE: x = x SYMMETRIC: If x = y the y = x TRANSITIVE: If x = y and y = z then x = z.
An relation is equivalent if and only if it is symmetric, reflexive and transitive. That is, if a ~ b and b ~a, if a ~ a, and if a ~ b, and b ~ c, then a ~ c.
In mathematics, the equality properties refer to certain rules and properties that govern the behavior of equalities. These properties include the reflexive property (a = a), the symmetric property (if a = b, then b = a), and the transitive property (if a = b and b = c, then a = c). These properties ensure that equality is a well-behaved and consistent relation.
An Axiom is a mathematical statement that is assumed to be true. There are five basic axioms of algebra. The axioms are the reflexive axiom, symmetric axiom, transitive axiom, additive axiom and multiplicative axiom.
The Symmetric Property of Congruence: If angle A is congruent to angle B, then angle B is congruent to angle A. If X is congruent to Y then Y is congruent to X.