answersLogoWhite

0

Area = r2*A where A is the angle measure in radians.

= 8*8*80*pi/180 = 89.361 square units.

User Avatar

Wiki User

13y ago

What else can I help you with?

Related Questions

What is the area of the shaded sector if the circle has a radius of 3 and the central angle is 90 degrees?

Find the area of the shaded sector. radius of 3 ...A+ = 7.07


How do you find the area of a sector with only radius given?

To find the area of a sector when only the radius is given, you'll need to know the angle of the sector in either degrees or radians. The formula for the area of a sector is ( A = \frac{1}{2} r^2 \theta ), where ( r ) is the radius and ( \theta ) is the angle in radians. If the angle is not provided, the area cannot be determined solely with the radius.


Calculate a sector of a circle if the angle is 150 degrees and the radius is 13cm?

The area of the sector is: 221.2 cm2


What is the area of the shaded sector if the circle has a radius of 7 and the central angle is 45 degrees?

19.23


What is the area of sector CED when DE equals 15 yd?

To find the area of sector CED, we need the radius (DE) and the angle of the sector. The area of a sector can be calculated using the formula: Area = (θ/360) × πr², where θ is the angle in degrees and r is the radius. Given that DE equals 15 yards, we would need the angle CED to calculate the area accurately. Without the angle, we cannot determine the area of sector CED.


How do you work out the area of a sector using the angle and radius?

the area of a sector = (angle)/360 x PI x radius x radius pi r squared


What is the area of sector CED when DE 15 yd?

To find the area of sector CED, we need the radius and the angle of the sector. If DE is the radius (15 yards), we would also need the angle in degrees or radians to calculate the area using the formula: Area = (θ/360) × πr² for degrees or Area = (1/2)r²θ for radians. Once the angle is provided, we can compute the area accurately. Please provide the angle for a complete calculation.


Find the sector area of a sector with radius of 30 and an angle of 60 degrees?

apply this formula: A = t/360 r2 when t = angle at center and r = radius so A = 471.2 (rounded to 1 decimal place)


A central angle measuring 120 degrees intercepts an arc in a circle whose radius is 6. What is the area of the sector of the circle formed by this central angle?

The area of the sector of the circle formed by the central angle is: 37.7 square units.


What is the area of a sector whose central angle is ninety degrees and has a radius of ten inches?

Well a circle has 360 degrees so a sector of 90 degrees has an area equal to 90/360 (or 1/4) of a circle with the equivalent radius. The area of a circle is defined as PI*Radius^2 so the area of a 90 degree sector will be 1/4*PI*Radius^2. The area will be 1/4*3.14*10^2 or 78.5 in^2.


How do you find the area of a shaded sector of a sector?

The area is r^2*x where r is the radius of the circle and x is the angle measured in radians. If you are still working in degrees then Area = (y/180)*r^2, where the angle is y.


What is the approximate area of the shaded sector in the circle below 18cm?

To find the area of a shaded sector in a circle, you need the radius and the angle of the sector. Assuming the radius of the circle is 18 cm, the area of the entire circle is given by the formula (A = \pi r^2), which equals approximately (1017.88 , \text{cm}^2). If you know the angle of the sector in degrees, you can calculate the area of the sector using the formula (A_{sector} = \frac{\theta}{360} \times A_{circle}), where (\theta) is the angle of the sector. Without the angle, I cannot provide the exact area of the shaded sector.