Circle equation: x^2 -4x +y^2 -6y = 4
Completing the squares: (x-2)^2 +(y-3)^2 = 17
Point of contact: (6, 4)
Center of circle: (2, 3)
Slope of radius: 1/4
Slope of tangent line: -4
Tangent equation: y-4 = -4(x-6) => y = -4x+28
Tangent line equation in its general form: 4x+y-28 = 0
The tangent of a circle always meets the radius of a circle at right angles.
It works out that the tangent line of y -3x -5 = 0 makes contact with the circle of x^2 + y^2 -2x +4y -5 = 0 at (-2, -1)
Point of contact: (3, 4) Circle equation: x^2 +y^2 -2x -6y+5 = 0 Completing the squares: (x-1)^2 +(y-3)^2 -1 -9 +5 = 0 So: (x-1)^2 +(y-3) = 5 Centre of circle: (1, 3) Slope of radius: (3-4)/(1-3) = 1/2 Slope of tangent: -2 Equation of tangent line: y-4 = -2(x-3) => 2x+y = 10 Tangent line meets the x axis at: (5, 0) Using formula distance from (1, 3) to (5, 0) = 5 units
Equation of circle: x^2 +y^2 +6x +10y -2 = 0 Completing the squares: (x+3)^2 +(y+5)^2 = 36 Radius of circle: 6 Center of circle: (-3, -5) Distance from (-2, 3) to (-3, -5) is sq rt of 65 which is hypotenuse of a right triangle Using Pythagoras' theorem: square root of 65^2 -6^2 = 29 Therefore length of tangent line is the square root of 29 Note that the tangent line of any circle always meets its radius at right angles which is 90 degrees.
A chord is a straight line drawn through a circle which divides the circle into two parts. The line can be drawn anywhere in the circle EXCEPT the center where it becomes the diameter.
Circle equation: x^2 +y^2 -8x +4y = 30 Tangent line equation: y = x+4 Centre of circle: (4, -2) Slope of radius: -1 Radius equation: y--2 = -1(x-4) => y = -x+2 Note that this proves that tangent of a circle is always at right angles to its radius
The tangent of a circle always meets the radius of a circle at right angles.
The radius and the tangent are perpendicular at the point on the circle where they meet.
There is no specific name for such an angle.
Equation of circle: x^2 +10x +y^2 -2y -39 = 0 Completing the squares: (x+5)^2 +(y-1)^2 = 65 Center of circle: (-5, 1) Slope of radius: 1/8 Slope of tangent line: -8 Point of contact: (3, 2) Equation of tangent line: y-2 = -8(x-3) => y = -8x+26 Note that the tangent line meets the radius of the circle at right angles.
true
Equation of circle: x^2 +y^2 -6x+4y+5 = 0 Completing the squares: (x-3)^2 +(y+2)^2 = 8 Radius of circle: square root of 8 Center of circle: (3, 2) The tangent lines touches the circle on the x axis at: (1, 0) and (5, 0) 1st tangent equation: y = x-1 2nd tangent equation: y = -x+5 Note that the tangent line of a circle meets its radius at right angles
A circle's tangent is exactly the same as a triangle's tangent. If you look at a circle, you can make the radius the hypotenuse. Then make a vertical line from the point, and a horizontal line from the center. If you look, you have a triangle made inside the circle. This is why angles can be measured in radians, a unit that is derived from the circumference of a circle.-------------------------------------------------------------------------------------------By doing a little calculus, we find that the slope of the equation of a circle-the slope of the tangent line-is given by the tangent of an angle.AnswerEverything written above is correct, but doesn't have anything to do with tangents (in the circle sense of the word). Suppose you're given an angle theta. Draw a circle together with two radii, one horizontal and the other at an angle theta from the first one. (So far, this is the same as above.) Now draw the tangent to the circle at X, the point where the non-horizontal radius meets the circumference. Let Y be the point where this tangent meets the horizontal line through the centre. Then, assuming the radius is 1, tan(theta) is the distance XY, which is the length of part of the tangent.
Equation of circle: x^2 +y^2 -2x -6y +5 = 0 Completing the squares: (x-1)^2 +(y-3)^2 = 5 Center of circle: (1, 3) Tangent line from (3, 4) meets the x axis at: (5, 0) Distance from (5, 0) to (1, 3) = 5 using the distance formula
A secant line touches a circle at two points. On the other hand a tangent line meets a circle at one point.
a tangent to the circle
It works out that the tangent line of y -3x -5 = 0 makes contact with the circle of x^2 + y^2 -2x +4y -5 = 0 at (-2, -1)