A function f(x) is even if f(-x) = f(x). A graph of f(x) would be symmetric about the y-axis (vertical symmetry about x=0). f(x) need not be "well-behaved" or even continuous, unlike the examples given in Wikipedia article on "Even and odd functions". The article does make this clear - under "Some facts".
radial symmetry, i am trying to find the reason now!
An equilateral triangle has both line symmetry and rotational symmetry. A non-equilateral isosceles triangle has line symmetry but not rotational symmetry. A scalene triangle has neither kind of symmetry.
it isn't because its a kind of nature.
According to animal classification into bilateria and radiata (ACCORDING TO SYMMETRY)the echinoderms and molluscs are bilaterally symmertrical.
Any polygon with an even number of sides can have two lines of symmetry, but it would have to be irregular.
An even function is a function that creates symmetry across the y-axis. An odd function is a function that creates origin symmetry.
Reflection about the y-axis.
You can tell if a function is even or odd by looking at its graph. If a function has rotational symmetry about the origin (meaning it can be rotated 180 degrees about the origin and remain the same function) it is an odd function. f(-x)=-f(x) An example of an odd function is the parent sine function: y=sinx If a function has symmetry about the y-axis (meaning it can be reflected across the y-axis to produce the same image) it is an even function. f(x)=f(-x) An example of an even function is the parent quadratic function: y=x2
You can tell if a function is even or odd by looking at its graph. If a function has rotational symmetry about the origin (meaning it can be rotated 180 degrees about the origin and remain the same function) it is an odd function. f(-x)=-f(x) An example of an odd function is the parent sine function: y=sinx If a function has symmetry about the y-axis (meaning it can be reflected across the y-axis to produce the same image) it is an even function. f(x)=f(-x) An example of an even function is the parent quadratic function: y=x2
If a function is even ie if f(-x) = f(x). Such a function would be symmetric about the y-axis. So f(x) is a many-to-one function. The inverse mapping then is one-to-many which is not a function. In fact, the function need not be symmetric about the y-axis. Symmetry about x=k (for any constant k) would also do. Also, leaving aside the question of symmetry, the existence of an inverse depends on the domain over which the original function is defined. Thus, y = f(x) = x2 does not have an inverse if f is defined from the real numbers (R) to R. But if it is defined from (and to) the non-negative Reals there is an inverse - the square-root function.
bilateral symmetry
Lateral Symmetry.
Bilateral symmetry
Radial Symmetry
turn symmetry
Bilateral symmetry.
It is an odd function. Even functions use the y-axis like a mirror, and odd functions have half-circle rotational symmetry.