A translation, a reflection and a rotation
The identity transformation.
The three transformations that have isometry are translations, rotations, and reflections. Each of these transformations preserves the distances between points, meaning the shape and size of the figure remain unchanged. As a result, the original figure and its image after the transformation are congruent.
Yes, it is one of the ways to prove a figure is a rhombus. If adjacent sides are congruent, then the figure is a rhombus.
An enlargement transformation will give the result of a similar shape.
A dilation would produce a similar figure.
A translation, a reflection and a rotation
Figures are congruent if and only if they are related by a translation, reflection, or rotation, or some combination of these transformations.
The identity transformation.
Please don't write "the following" if you don't provide a list. We can't guess that list.
A dilation (or scaling) is a transformation that does not always result in an image that is congruent to the original figure. While translations, rotations, and reflections always produce congruent figures, dilations change the size of the figure, which means the image may be similar to, but not congruent with, the original figure.
A transformation that will not produce a congruent figure is a dilation. Dilation changes the size of a figure while maintaining its shape, meaning the resulting figure is similar but not congruent to the original. In contrast, congruent figures have the same size and shape, which is not preserved during dilation. Other transformations that maintain congruence include translations, rotations, and reflections.
A transformation that does not produce a congruent image is a dilation. While dilations change the size of a figure, they maintain the shape, meaning the resulting image is similar but not congruent to the original. In contrast, transformations such as translations, rotations, and reflections preserve both size and shape, resulting in congruent images.
Reflections, translations, rotations.
A figure is always congruent to its image under transformation because congruence means that the two figures have the same shape and size. Transformations such as translations, rotations, and reflections preserve the lengths of sides and the measures of angles, ensuring that the original figure and its image maintain their geometric properties. Therefore, any transformation applied will result in an image that is congruent to the original figure.
Yes
The three transformations that have isometry are translations, rotations, and reflections. Each of these transformations preserves the distances between points, meaning the shape and size of the figure remain unchanged. As a result, the original figure and its image after the transformation are congruent.